http://iet.metastore.ingenta.com
1887

Exponential synchronisation of hybrid impulsive and switching dynamical networks with time delays

Exponential synchronisation of hybrid impulsive and switching dynamical networks with time delays

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study formulates and studies a model of hybrid impulsive and switching dynamical networks with time delays. There are two separable switching functions acting on the network. One drives inherent network structures and the other induces finite-state feedback in the control law. These hybrid networks have both continuous-time and discrete-time dynamics. At each moment, the coupling structure changes from one graph to another. At the same time, the continuous state variables may jump from one value to another. Time delays considered in this paper exist in isolated dynamical nodes, interconnections and impulsive noise disturbances. Based on Lyapunov stability theory, some new sufficient criteria are derived for exponential convergence of disagreement dynamics, which implies that network synchronisation of such hybrid-delayed network is achieved. An illustrative example of a delayed chaotic network with switching topology and impulse effects is used to demonstrate the main results.

References

    1. 1)
      • 1. Zhou, J., Xiang, L., Liu, Z.R.: ‘Synchronization in complex delayed dynamical networks with impulsive effects’, Physica A, 2007, 384, (2), pp. 684692 (doi: 10.1016/j.physa.2007.05.060).
    2. 2)
      • 2. Zhang, Q., Lu, J., Lü, J., Tse, C.K.: ‘Adaptive feedback synchronization of a general complex dynamical network with delayed nodes’, IEEE Trans. Circuits Syst. II., 2008, 55, (2), pp. 183187 (doi: 10.1109/TCSII.2007.911813).
    3. 3)
      • 3. Xia, W., Cao, J.: ‘Pinning synchronization of delayed dynamical networks via periodically intermittent control’, Chaos, 2009, 19, (1), p. 013120 (doi: 10.1063/1.3071933).
    4. 4)
      • 4. Li, C., Chen, G.: ‘Synchronization in general complex dynamical networks with coupling delays’, Physica A, 2004, 343, (11), pp. 263278 (doi: 10.1016/j.physa.2004.05.058).
    5. 5)
      • 5. Xiao, F., Wang, L.: ‘Asynchronous consensus in continuous-time multi-agent systems with switching topology and time-varying delays’, IEEE Trans. Autom. Control., 2008, 53, (8), pp. 18041816 (doi: 10.1109/TAC.2008.929381).
    6. 6)
      • 6. Zhou, J., Chen, T.: ‘Synchronization in general complex delayed dynamical networks’, IEEE Trans. Circuits Syst. I., 2006, 53, (3), pp. 733744 (doi: 10.1109/TCSI.2005.859050).
    7. 7)
      • 7. Yao, J., Guan, Z., Hill, D.J.: ‘Passivity-based control and synchronization of general complex dynamical networks’, Automatica, 2009, 45, (9), pp. 21072113 (doi: 10.1016/j.automatica.2009.05.006).
    8. 8)
      • 8. Liu, X., Cao, J., Yu, W.: ‘Filippov systems and quasi-synchronization control for switched networks’, Chaos, 2012, 22, pp. 033110 (doi: 10.1063/1.4733316).
    9. 9)
      • 9. Olfati-Saber, R., Murray, R.M.: ‘Consensus problems in networks of agents with switching topology and time-delays’, IEEE Trans. Autom. Control, 2004, 49, (9), pp. 15201533 (doi: 10.1109/TAC.2004.834113).
    10. 10)
      • 10. Ren, W., Beard, R.W.: ‘Consensus seeking in multiagent systems under dynamically changing interaction topologies’, IEEE Trans. Autom. Control, 2005, 50, (5), pp. 655661 (doi: 10.1109/TAC.2005.846556).
    11. 11)
      • 11. Sun, Y.G., Wang, L., Xie, G.: ‘Average consensus in networks of dynamic agents with switching topologies and multiple time-varying delays’, Syst. Control Lett., 2008, 57, (2), pp. 175183 (doi: 10.1016/j.sysconle.2007.08.009).
    12. 12)
      • 12. Lu, J., Ho, D.W.C., Wu, L.: ‘Exponential stabilization of switched stochastic dynamical networks’, Nonlinearity, 2009, 22, pp. 889911 (doi: 10.1088/0951-7715/22/4/011).
    13. 13)
      • 13. Yu, W., Cao, J., Lu, W.: ‘Synchronization control of switched linearly coupled neural networks with delay’, Neurocomputing, 2010, 73, (4–6), pp. 858866 (doi: 10.1016/j.neucom.2009.10.009).
    14. 14)
      • 14. Yao, J., Hill, D.J., Guan, Z.H., Wang, H.O.: ‘Synchronization of complex dynamical networks with switching topology via adaptive control’. Proc. 45th IEEE Conf. on Decision and Control, December 2006, San Diego, CA, USA, pp. 28192824.
    15. 15)
      • 15. Yao, J., Wang, H.O., Guan, Z.H., Xu, W.S.: ‘Passive stability and synchronization of complex spatio-temporal switching networks with time-delays’, Automatica, 2009, 45, (7), pp. 17211728 (doi: 10.1016/j.automatica.2009.02.030).
    16. 16)
      • 16. Chen, J., Lü, J., Wu, X., Zheng, W.X.: ‘Generalized synchronization of complex dynamical networks via impulsive control’, Chaos, 2009, 19, (4), p. 043119 (doi: 10.1063/1.3268587).
    17. 17)
      • 17. Barabási, A.-L.: ‘Linked: the new science of networks’ (Perseus, 2002).
    18. 18)
      • 18. Yao, J., Guan, Z.-H., Hill, D.J., Wang, H.O.: ‘On passivity and impulsive control of complex dynamical networks with coupling delays’. Proc. 44th IEEE Conf. on Decision and Control and European Control Conf., Seville, Spain, December 2005, pp. 15951600.
    19. 19)
      • 19. Chen, W.-H., Zheng, W.X.: ‘Input-to-state stability and integral input-to-state stability of nonlinear impulsive systems with delays’, Automatica, 2009, 45, (6), pp. 14811488 (doi: 10.1016/j.automatica.2009.02.005).
    20. 20)
      • 20. Li, C., Ma, F., Feng, G.: ‘Hybrid impulsive and switching time-delay systems’, IET Control Theory Applic., 2009, 3, (11), pp. 14871498 (doi: 10.1049/iet-cta.2008.0222).
    21. 21)
      • 21. Liu, J., Liu, X., Xie, W.-C.: ‘Input-to-state stability of impulsive and switching hybrid systems with time-delay’, Automatica, 2011, 47, (5), pp. 899908 (doi: 10.1016/j.automatica.2011.01.061).
    22. 22)
      • 22. Khadra, A., Liu, X., Shen, X.: ‘Analyzing the robustness of impulsive synchronization coupled by linear delayed impulses’, IEEE Trans. Autom. Control, 2009, 54, (4), pp. 923928 (doi: 10.1109/TAC.2009.2013029).
    23. 23)
      • 23. Jiang, H.B.: ‘Hybrid adaptive and impulsive synchronisation of uncertain complex dynamical networks by the generalised Barbalat's lemma’, IET Control Theory Applic., 2009, 3, (10), pp. 13301340 (doi: 10.1049/iet-cta.2008.0335).
    24. 24)
      • 24. Dai, Y., Cai, Y., Xu, X.: ‘Synchronisation analysis and impulsive control of complex networks with coupling delays’, IET Control Theory Applic., 2009, 3, (9), pp. 11671174 (doi: 10.1049/iet-cta.2008.0294).
    25. 25)
      • 25. Chen, W.-H., Zhang, W.X.: ‘Global exponential stability of impulsive neural networks with variable delay: an LMI approach’, IEEE Trans. Circuits Syst. I, Reg. Pap., 2009, 56, (6), pp. 12481259 (doi: 10.1109/TCSI.2008.2006210).
    26. 26)
      • 26. Semsar-Kazerooni, E., Khorasani, K.: ‘Switching control of a modified leader-follower team of agents under the leader and network topological changes’, IET Control Theory Applic., 2011, 5, (12), pp. 13691377 (doi: 10.1049/iet-cta.2010.0396).
    27. 27)
      • 27. Xie, D., Xu, N., Chen, X.: ‘Stabilisability and observer-based switched control design for switched linear systems’, IET Control Theory Applic., 2008, 2, (3), pp. 192199 (doi: 10.1049/iet-cta:20060502).
    28. 28)
      • 28. Halanay, A.: ‘Differential equations: stability, oscillations, time lags’ (Academic Press, 1966).
    29. 29)
      • 29. Chen, G., Wang, X., Li, X., Lu, J.: ‘Some recent advances in complex networks synchronization’, ‘Recent advances in nonlinear dynamics and synchronizationSeries – Studies in computational intelligence, (Springer, 2009), pp. 316.
    30. 30)
      • 30. Dullerud, G.E., Paganini, F.: ‘A course in robust control theory-a convex approach’ (Springer, 2000).
    31. 31)
      • 31. Lü, J., Chen, G., Cheng, D., Celikovsky, S.: ‘Bridge the gap between the Lorenz system and the Chen system’, Int. J. Bifurcation Chaos, 2002, 12, (12), pp. 29172926 (doi: 10.1142/S021812740200631X).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2012.0345
Loading

Related content

content/journals/10.1049/iet-cta.2012.0345
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address