Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Gradient-based and least-squares-based iterative algorithms for Hammerstein systems using the hierarchical identification principle

Gradient-based and least-squares-based iterative algorithms for Hammerstein systems using the hierarchical identification principle

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study derives a least-squares-based iterative algorithm and a gradient-based iterative algorithm for Hammerstein systems using the decomposition-based hierarchical identification principle. The simulation results confirm that the proposed two algorithms can give satisfactory identification accuracies and the least-squares-based iterative algorithm has faster convergence rates than the gradient-based iterative algorithm.

References

    1. 1)
      • 6. Ding, F., Yang, H.Z., Liu, F.: ‘Performance analysis of stochastic gradient algorithms under weak conditions’, Sci. China F, Inf. Sci., 2008, 51, (9), pp. 12691280.
    2. 2)
      • 44. Goodwin, G.C., Sin, K.S.: ‘Adaptive filtering, prediction and control’ (Prentice-Hall, Englewood Cliffs, NJ, 1984).
    3. 3)
      • 43. Ljung, L.: ‘System identification: theory for the user’ (Prentice-Hall, Englewood Cliffs, NJ, 1999, 2nd edn).
    4. 4)
      • 25. Chang, F., Luus, R.: ‘A noniterative method for identification using Hammerstein model’, IEEE Trans. Autom. Control, 1971, 16, (5), pp. 464468.
    5. 5)
      • 32. Vörös, J.: ‘Parameter identification of Wiener systems with multisegment piecewise-linear nonlinearities’, Syst. Control Lett., 2007, 56, (2), pp. 99105.
    6. 6)
      • 21. Bai, E.W., Chan, K.S.: ‘Identification of an additive nonlinear system and its applications in generalized Hammerstein models’, Automatica, 2008, 44, (2), pp. 430436.
    7. 7)
      • 22. Mercère, G., Bako, L.: ‘Parameterization and identification of multivariable state-space systems: A canonical approach’, Automatica, 2011, 47, (8), pp. 15471555.
    8. 8)
      • 7. Ding, J., Han, L.L., Chen, X.M.: ‘Time series AR modeling with missing observations based on the polynomial transformation’, Math. Comput. Modelling, 2010, 51, (5–6), pp. 527536.
    9. 9)
      • 41. Cerone, V., Regruto, D.: ‘Parameter bounds for discrete-time Hammerstein models with bounded output errors’, IEEE Trans. Autom. Control, 2003, 48, (10), pp. 18551860.
    10. 10)
      • 18. Ding, F., Chen, T.: ‘Hierarchical identification of lifted state-space models for general dual-rate systems’, IEEE Trans. Circuits Syst. I, Regular Pap., 2005, 52, (6), pp. 11791187.
    11. 11)
      • 26. Haist, N.D., Chang, F., Luus, R.: ‘Nonlinear identification in the presence of correlated noise using a Hammerstein model’, IEEE Trans. Autom. Control, 1973, 18, (5), pp. 553555.
    12. 12)
      • 20. Zhang, Z.N., Ding, F., Liu, X.G.: ‘Hierarchical gradient based iterative parameter estimation algorithm for multivariable output error moving average systems’, Comput. Math. Appl., 2011, 61, (3), pp. 672682.
    13. 13)
      • 37. Liu, X.G., Lu, J.: ‘Least squares based iterative identification for a class of multirate systems’, Automatica, 2010, 46, (3), pp. 549554.
    14. 14)
      • 48. Bai, E.W.: ‘A blind approach to the Hammerstein–Wiener model identification’, Automatica, 2002, 38, (6), pp. 967979.
    15. 15)
      • 28. Bai, E.W.: ‘An optimal two-stage identification algorithm for Hammerstein–Wiener nonlinear systems’, Automatica, 1998, 34, (3), pp. 333338.
    16. 16)
      • 31. Vörös, J.: ‘Recursive identification of Hammerstein systems with discontinuous nonlinearities containing dead-zones’, IEEE Trans. Autom. Control, 2003, 48, (12), pp. 22032206.
    17. 17)
      • 39. Ding, F., Shi, Y., Chen, T.: ‘Auxiliary model based least-squares identification methods for Hammerstein output-error systems’, Syst. Control Lett., 2007, 56, (5), pp. 373380.
    18. 18)
      • 8. Liu, Y.J., Sheng, J., Ding, R.F.: ‘Convergence of stochastic gradient estimation algorithm for multivariable ARX-like systems’, Comput. Math. Appl., 2010, 59, (8), pp. 26152627.
    19. 19)
      • 14. Ding, F., Liu, P.X., Liu, G.: ‘Auxiliary model based multi-innovation extended stochastic gradient parameter estimation with colored measurement noises’, Signal Process., 2009, 89, (10), pp. 18831890.
    20. 20)
      • 50. Ding, F.: ‘Decomposition based fast least squares algorithm for output error systems’, Signal Process., 2013, 93, (5), pp. 12351242.
    21. 21)
      • 33. Vörös, J.: ‘Modeling and identification of systems with backlash’, Automatica, 2010, 46, (2), pp. 369374.
    22. 22)
      • 19. Ding, F., Qiu, L., Chen, T.: ‘Reconstruction of continuous-time systems from their non-uniformly sampled discrete-time systems’, Automatica, 2009, 45, (2), pp. 324332.
    23. 23)
      • 2. Xie, L., Liu, Y.J., Yang, H.Z., et al.: ‘Modeling and identification for non-uniformly periodically sampled-data systems’, IET Control Theory Applic., 2010, 4, (5), pp. 784794.
    24. 24)
      • 5. Ding, F., Liu, Y.J., Bao, B.: ‘Gradient based and least squares based iterative estimation algorithms for multi-input multi-output systems’, Proc. Inst. Mech. Eng. I J., Syst. Control Eng., 2012, 226, (1), pp. 4355.
    25. 25)
      • 36. Wang, D.Q., Ding, F.: ‘Least squares based and gradient based iterative identification for Wiener nonlinear systems’, Signal Process., 2011, 91, (5), pp. 11821189.
    26. 26)
      • 35. Bai, E.W., Li, K.: ‘Convergence of the iterative algorithm for a general Hammerstein system identification’, Automatica, 2010, 46, (11), pp. 18911896.
    27. 27)
      • 13. Ding, J., Ding, F.: ‘Bias compensation based parameter estimation for output error moving average systems’, Int. J. Adapt. Control Signal Process., 2011, 25, (12), pp. 11001111.
    28. 28)
      • 11. Ding, F., Shi, F., Chen, T.: ‘Performance analysis of estimation algorithms of non-stationary ARMA processes’, IEEE Trans. Signal Process., 2006, 54, (3), pp. 10411053.
    29. 29)
      • 9. Ding, F., Liu, G., Liu, X.: ‘Partially coupled stochastic gradient identification methods for non-uniformly sampled systems’, IEEE Trans. Autom. Control, 2010, 55, (8), pp. 19761981.
    30. 30)
      • 1. Wang, D.Q.: ‘Least squares-based recursive and iterative estimation for output error moving average (OEMA) systems using data filtering’, IET Control Theory Applic., 2011, 5, (14), pp. 16481657.
    31. 31)
      • 27. Ding, F., Chen, T.: ‘Identification of Hammerstein nonlinear ARMAX systems’, Automatica, 2005, 41, (9), pp. 14791489.
    32. 32)
      • 17. Ding, F., Liu, G., Liu, X.P.: ‘Parameter estimation with scarce measurements’, Automatica, 2011, 47, (8), pp. 16461655.
    33. 33)
      • 3. Yan, M., Shi, Y.: ‘Robust discrete-time sliding mode control for uncertain systems with time-varying state delay’, IET Control Theory Appl., 2008, 2, (8), pp. 662674.
    34. 34)
      • 34. Liu, Y., Bai, E.W.: ‘Iterative identification of Hammerstein systems’, Automatica, 2007, 43, (2), pp. 346354.
    35. 35)
      • 45. Ding, F., Chen, T.: ‘Hierarchical gradient-based identification of multivariable discrete-time systems’, Automatica, 2005, 41, (2), pp. 315325.
    36. 36)
      • 49. Golub, G.H., Loan, C.F.V.: ‘Matrix computations’, (Johns Hopkins University Press, Baltimore, MD, 1996, 3rd edn).
    37. 37)
      • 23. Schön, T., Wills, A., Ninness, B.: ‘System identification of nonlinear state-space models’, Automatica, 2011, 47, (1), pp. 3949.
    38. 38)
      • 38. Ding, F., Liu, P.X., Liu, G.: ‘Identification methods for Hammerstein nonlinear systems’, Digital Signal Process., 2011, 21, (2), pp. 215238.
    39. 39)
      • 15. Liu, Y.J., Xiao, Y.S., Zhao, X.L.: ‘Mlti-innovation stochastic gradient algorithm for multiple-input single-output systems using the auxiliary model’, Appl. Math. Computat., 2009, 215, (4), pp. 14771483.
    40. 40)
      • 29. Wang, J., Zhang, Q., Ljung, L.: ‘Revisiting Hammerstein system identification through the two-stage algorithm for bilinear parameter estimation’, Automatica, 2009, 45, (11), pp. 26272633.
    41. 41)
      • 42. Gallman, P.G.: ‘A comparison of two Hammerstein model identification algorithms’, IEEE Trans. Autom. Control, 1976, 21, (1), pp. 124126.
    42. 42)
      • 30. Michalkiewicz, J.: ‘Modified Kolmogorov's Neural Network in the identification of Hammerstein and Wiener systems’, IEEE Trans. Neural Netw. Learning Syst., 2012, 23, (4), pp. 657662.
    43. 43)
      • 46. Söderström, T., Stoica, P.: ‘System identification’ (Prentice-Hall, 1989).
    44. 44)
      • 12. Ding, J., Ding, F., et al: ‘Hierarchical least squares identification for linear SISO systems with dual-rate sampled-data’, IEEE Trans. Autom. Control, 2011, 56, (11), pp. 26772683.
    45. 45)
      • 47. Bai, E.W.: ‘Identification of linear systems with hard input nonlinearities of known structure’, Automatica, 2002, 38, (5), pp. 853860.
    46. 46)
      • 10. Ding, F., Chen, T.: ‘Performance bounds of the forgetting factor least squares algorithm for time-varying systems with finite measurement data’, IEEE Trans. Circuits Syst. I, Regular Pap., 2005, 52, (3), pp. 555566.
    47. 47)
      • 24. Narendra, K.S., Gallman, P.G.: ‘An iterative method for the identification ofnonlinear systems using a Hammerstein model’, IEEE Trans. Autom. Control, 1966, 11, (3), pp. 546550.
    48. 48)
      • 16. Ding, F.: ‘Several multi-innovation identification methods’, Digital Signal Process., 2010, 20, (4), pp. 10271039.
    49. 49)
      • 4. Wang, D.Q., Yang, G.W., Ding, R.F.: ‘Gradient-based iterative parameter estimation for Box-Jenkins systems’, Comput. Math. Appl., 2010, 60, (5), pp. 12001208.
    50. 50)
      • 40. Ding, F.: ‘Hierarchical multi-innovation stochastic gradient algorithm for Hammerstein nonlinear system modeling’, Appl. Math. Modelling, 2013, 37, (4), pp. 16941704.
    51. 51)
      • 51. Ding, F.: ‘Coupled-least-squares identification for multivariable systems’, IET Control Theory Appli., 2013, 7, (x), http://dx.doi.org/10.1049/iet-cta.2012.0171.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2012.0313
Loading

Related content

content/journals/10.1049/iet-cta.2012.0313
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address