Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Gradient-based and least-squares-based iterative algorithms for Hammerstein systems using the hierarchical identification principle

This study derives a least-squares-based iterative algorithm and a gradient-based iterative algorithm for Hammerstein systems using the decomposition-based hierarchical identification principle. The simulation results confirm that the proposed two algorithms can give satisfactory identification accuracies and the least-squares-based iterative algorithm has faster convergence rates than the gradient-based iterative algorithm.

References

    1. 1)
      • 6. Ding, F., Yang, H.Z., Liu, F.: ‘Performance analysis of stochastic gradient algorithms under weak conditions’, Sci. China F, Inf. Sci., 2008, 51, (9), pp. 12691280.
    2. 2)
      • 44. Goodwin, G.C., Sin, K.S.: ‘Adaptive filtering, prediction and control’ (Prentice-Hall, Englewood Cliffs, NJ, 1984).
    3. 3)
      • 43. Ljung, L.: ‘System identification: theory for the user’ (Prentice-Hall, Englewood Cliffs, NJ, 1999, 2nd edn).
    4. 4)
      • 25. Chang, F., Luus, R.: ‘A noniterative method for identification using Hammerstein model’, IEEE Trans. Autom. Control, 1971, 16, (5), pp. 464468.
    5. 5)
      • 32. Vörös, J.: ‘Parameter identification of Wiener systems with multisegment piecewise-linear nonlinearities’, Syst. Control Lett., 2007, 56, (2), pp. 99105.
    6. 6)
      • 21. Bai, E.W., Chan, K.S.: ‘Identification of an additive nonlinear system and its applications in generalized Hammerstein models’, Automatica, 2008, 44, (2), pp. 430436.
    7. 7)
      • 22. Mercère, G., Bako, L.: ‘Parameterization and identification of multivariable state-space systems: A canonical approach’, Automatica, 2011, 47, (8), pp. 15471555.
    8. 8)
      • 7. Ding, J., Han, L.L., Chen, X.M.: ‘Time series AR modeling with missing observations based on the polynomial transformation’, Math. Comput. Modelling, 2010, 51, (5–6), pp. 527536.
    9. 9)
      • 41. Cerone, V., Regruto, D.: ‘Parameter bounds for discrete-time Hammerstein models with bounded output errors’, IEEE Trans. Autom. Control, 2003, 48, (10), pp. 18551860.
    10. 10)
      • 18. Ding, F., Chen, T.: ‘Hierarchical identification of lifted state-space models for general dual-rate systems’, IEEE Trans. Circuits Syst. I, Regular Pap., 2005, 52, (6), pp. 11791187.
    11. 11)
      • 26. Haist, N.D., Chang, F., Luus, R.: ‘Nonlinear identification in the presence of correlated noise using a Hammerstein model’, IEEE Trans. Autom. Control, 1973, 18, (5), pp. 553555.
    12. 12)
      • 20. Zhang, Z.N., Ding, F., Liu, X.G.: ‘Hierarchical gradient based iterative parameter estimation algorithm for multivariable output error moving average systems’, Comput. Math. Appl., 2011, 61, (3), pp. 672682.
    13. 13)
      • 37. Liu, X.G., Lu, J.: ‘Least squares based iterative identification for a class of multirate systems’, Automatica, 2010, 46, (3), pp. 549554.
    14. 14)
      • 48. Bai, E.W.: ‘A blind approach to the Hammerstein–Wiener model identification’, Automatica, 2002, 38, (6), pp. 967979.
    15. 15)
      • 28. Bai, E.W.: ‘An optimal two-stage identification algorithm for Hammerstein–Wiener nonlinear systems’, Automatica, 1998, 34, (3), pp. 333338.
    16. 16)
      • 31. Vörös, J.: ‘Recursive identification of Hammerstein systems with discontinuous nonlinearities containing dead-zones’, IEEE Trans. Autom. Control, 2003, 48, (12), pp. 22032206.
    17. 17)
      • 39. Ding, F., Shi, Y., Chen, T.: ‘Auxiliary model based least-squares identification methods for Hammerstein output-error systems’, Syst. Control Lett., 2007, 56, (5), pp. 373380.
    18. 18)
      • 8. Liu, Y.J., Sheng, J., Ding, R.F.: ‘Convergence of stochastic gradient estimation algorithm for multivariable ARX-like systems’, Comput. Math. Appl., 2010, 59, (8), pp. 26152627.
    19. 19)
      • 14. Ding, F., Liu, P.X., Liu, G.: ‘Auxiliary model based multi-innovation extended stochastic gradient parameter estimation with colored measurement noises’, Signal Process., 2009, 89, (10), pp. 18831890.
    20. 20)
      • 50. Ding, F.: ‘Decomposition based fast least squares algorithm for output error systems’, Signal Process., 2013, 93, (5), pp. 12351242.
    21. 21)
      • 33. Vörös, J.: ‘Modeling and identification of systems with backlash’, Automatica, 2010, 46, (2), pp. 369374.
    22. 22)
      • 19. Ding, F., Qiu, L., Chen, T.: ‘Reconstruction of continuous-time systems from their non-uniformly sampled discrete-time systems’, Automatica, 2009, 45, (2), pp. 324332.
    23. 23)
      • 2. Xie, L., Liu, Y.J., Yang, H.Z., et al.: ‘Modeling and identification for non-uniformly periodically sampled-data systems’, IET Control Theory Applic., 2010, 4, (5), pp. 784794.
    24. 24)
      • 5. Ding, F., Liu, Y.J., Bao, B.: ‘Gradient based and least squares based iterative estimation algorithms for multi-input multi-output systems’, Proc. Inst. Mech. Eng. I J., Syst. Control Eng., 2012, 226, (1), pp. 4355.
    25. 25)
      • 36. Wang, D.Q., Ding, F.: ‘Least squares based and gradient based iterative identification for Wiener nonlinear systems’, Signal Process., 2011, 91, (5), pp. 11821189.
    26. 26)
      • 35. Bai, E.W., Li, K.: ‘Convergence of the iterative algorithm for a general Hammerstein system identification’, Automatica, 2010, 46, (11), pp. 18911896.
    27. 27)
      • 13. Ding, J., Ding, F.: ‘Bias compensation based parameter estimation for output error moving average systems’, Int. J. Adapt. Control Signal Process., 2011, 25, (12), pp. 11001111.
    28. 28)
      • 11. Ding, F., Shi, F., Chen, T.: ‘Performance analysis of estimation algorithms of non-stationary ARMA processes’, IEEE Trans. Signal Process., 2006, 54, (3), pp. 10411053.
    29. 29)
      • 9. Ding, F., Liu, G., Liu, X.: ‘Partially coupled stochastic gradient identification methods for non-uniformly sampled systems’, IEEE Trans. Autom. Control, 2010, 55, (8), pp. 19761981.
    30. 30)
      • 1. Wang, D.Q.: ‘Least squares-based recursive and iterative estimation for output error moving average (OEMA) systems using data filtering’, IET Control Theory Applic., 2011, 5, (14), pp. 16481657.
    31. 31)
      • 27. Ding, F., Chen, T.: ‘Identification of Hammerstein nonlinear ARMAX systems’, Automatica, 2005, 41, (9), pp. 14791489.
    32. 32)
      • 17. Ding, F., Liu, G., Liu, X.P.: ‘Parameter estimation with scarce measurements’, Automatica, 2011, 47, (8), pp. 16461655.
    33. 33)
      • 3. Yan, M., Shi, Y.: ‘Robust discrete-time sliding mode control for uncertain systems with time-varying state delay’, IET Control Theory Appl., 2008, 2, (8), pp. 662674.
    34. 34)
      • 34. Liu, Y., Bai, E.W.: ‘Iterative identification of Hammerstein systems’, Automatica, 2007, 43, (2), pp. 346354.
    35. 35)
      • 45. Ding, F., Chen, T.: ‘Hierarchical gradient-based identification of multivariable discrete-time systems’, Automatica, 2005, 41, (2), pp. 315325.
    36. 36)
      • 49. Golub, G.H., Loan, C.F.V.: ‘Matrix computations’, (Johns Hopkins University Press, Baltimore, MD, 1996, 3rd edn).
    37. 37)
      • 23. Schön, T., Wills, A., Ninness, B.: ‘System identification of nonlinear state-space models’, Automatica, 2011, 47, (1), pp. 3949.
    38. 38)
      • 38. Ding, F., Liu, P.X., Liu, G.: ‘Identification methods for Hammerstein nonlinear systems’, Digital Signal Process., 2011, 21, (2), pp. 215238.
    39. 39)
      • 15. Liu, Y.J., Xiao, Y.S., Zhao, X.L.: ‘Mlti-innovation stochastic gradient algorithm for multiple-input single-output systems using the auxiliary model’, Appl. Math. Computat., 2009, 215, (4), pp. 14771483.
    40. 40)
      • 29. Wang, J., Zhang, Q., Ljung, L.: ‘Revisiting Hammerstein system identification through the two-stage algorithm for bilinear parameter estimation’, Automatica, 2009, 45, (11), pp. 26272633.
    41. 41)
      • 42. Gallman, P.G.: ‘A comparison of two Hammerstein model identification algorithms’, IEEE Trans. Autom. Control, 1976, 21, (1), pp. 124126.
    42. 42)
      • 30. Michalkiewicz, J.: ‘Modified Kolmogorov's Neural Network in the identification of Hammerstein and Wiener systems’, IEEE Trans. Neural Netw. Learning Syst., 2012, 23, (4), pp. 657662.
    43. 43)
      • 46. Söderström, T., Stoica, P.: ‘System identification’ (Prentice-Hall, 1989).
    44. 44)
      • 12. Ding, J., Ding, F., et al: ‘Hierarchical least squares identification for linear SISO systems with dual-rate sampled-data’, IEEE Trans. Autom. Control, 2011, 56, (11), pp. 26772683.
    45. 45)
      • 47. Bai, E.W.: ‘Identification of linear systems with hard input nonlinearities of known structure’, Automatica, 2002, 38, (5), pp. 853860.
    46. 46)
      • 10. Ding, F., Chen, T.: ‘Performance bounds of the forgetting factor least squares algorithm for time-varying systems with finite measurement data’, IEEE Trans. Circuits Syst. I, Regular Pap., 2005, 52, (3), pp. 555566.
    47. 47)
      • 24. Narendra, K.S., Gallman, P.G.: ‘An iterative method for the identification ofnonlinear systems using a Hammerstein model’, IEEE Trans. Autom. Control, 1966, 11, (3), pp. 546550.
    48. 48)
      • 16. Ding, F.: ‘Several multi-innovation identification methods’, Digital Signal Process., 2010, 20, (4), pp. 10271039.
    49. 49)
      • 4. Wang, D.Q., Yang, G.W., Ding, R.F.: ‘Gradient-based iterative parameter estimation for Box-Jenkins systems’, Comput. Math. Appl., 2010, 60, (5), pp. 12001208.
    50. 50)
      • 40. Ding, F.: ‘Hierarchical multi-innovation stochastic gradient algorithm for Hammerstein nonlinear system modeling’, Appl. Math. Modelling, 2013, 37, (4), pp. 16941704.
    51. 51)
      • 51. Ding, F.: ‘Coupled-least-squares identification for multivariable systems’, IET Control Theory Appli., 2013, 7, (x), http://dx.doi.org/10.1049/iet-cta.2012.0171.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2012.0313
Loading

Related content

content/journals/10.1049/iet-cta.2012.0313
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address