access icon free Fractional order adaptive controller for stabilised systems via high-gain feedback

Controllers based on fractional order calculus are gaining more and more interests from the control community. This type of controllers may involve fractional integration, fractional differentiation and/or fractional systems in their structure or implementation. They have been introduced in the control applications in a continuous effort to enhance the system control quality performances and robustness. In this study, a new scheme of fractional order adaptive controller via high-gain output feedback for a class of linear, time-invariant, minimum phase and single input-single output systems of relative degree one is proposed. The basic idea of the new design is a further modification in the adaptive proportional control law by the introduction of a fractional integration besides of the regular one of the squared output of the system in the adaptation gain of the control strategy. An analytical stability proof of the feedback control system is presented. The control quality enhancement of the proposed control scheme compared with the classical one has been presented through the simulation results of an illustrative example.

Inspec keywords: stability; adaptive control; feedback; linear systems

Other keywords: analytical stability proof; adaptation gain; feedback control system; fractional order calculus; minimum phase systems; control applications; fractional integration; fractional differentiation; stabilised systems; time-invariant systems; single input-single output systems; high-gain feedback; fractional order adaptive controller; linear systems; system control quality performances; high-gain output feedback; adaptive proportional control law; fractional systems; control quality enhancement

Subjects: Stability in control theory; Self-adjusting control systems

References

    1. 1)
      • 5. Podlubny, I.: ‘Fractional order systems and PIλ Dμ controllers’, IEEE Trans. Autom. Control, 1999, 44, (1), pp. 208214 (doi: 10.1109/9.739144).
    2. 2)
      • 17. Ladaci, S., Loiseau, J.-J., Charef A.: ‘Fractional order adaptive high-gain controllers for class of linear systems’, Commun. Nonlinear Sci. Numer. Simul., 2008, 13, (4), pp. 707714 (doi: 10.1016/j.cnsns.2006.06.009).
    3. 3)
      • 23. Corless, M.: ‘First order adaptive controllers for systems which are stabilizable via high gain output feedback’, in Byrnes, C.I., Martin, C.F., Seaks, R.E. (Eds): ‘Analysis and control of nonlinear systems’ (Elsevier Science Publishers B. V., North-Holland, 1988), pp. 1316.
    4. 4)
      • 4. Axtell, M., Bise, E.M.: ‘Fractional calculus applications in control systems’. Proc. IEEE Nat. Aero. and Electronics Conf., NY, USA, 21–25 May, 1990.
    5. 5)
      • 1. Bode, H.W.: ‘Network analysis and feedback amplifier design’ (Van Nostrand, New York, 1945).
    6. 6)
      • 24. Ilchmann, A.: ‘Non-identifier-based high-gain adaptive control’, Springer-Verlag, Germany, 1993(LNCS, 189)..
    7. 7)
      • 13. Suárez, J.I., Vinagre, B.M., Chen, Y.Q.: ‘A fractional adaptation scheme for lateral control of an AGV’, J. Vibrat. Control., 2008, 14, (9–10), pp. 14991511 (doi: 10.1177/1077546307087434).
    8. 8)
      • 26. Ilchmann, A., Ryan, E.P.: ‘On tracking and disturbance rejection by adaptive control’, Syst. Control Lett., 2004, 52, (2), pp. 137147 (doi: 10.1016/j.sysconle.2003.11.007).
    9. 9)
      • 25. Polderman, J.W., Mareels, I.M.Y.: ‘High gain adaptive control revisited: first and second order case’. Proc. 38th Conf. Decision & Control, Phoenix, Arizona, USA, December 1999, pp. 33293333.
    10. 10)
      • 27. Corless, M.: ‘Simple adaptive controllers for systems which are stabilizable via high-gain feedback’, IMA J. Math. Control Inf., 1991, 8, (4), pp. 379387 (doi: 10.1093/imamci/8.4.379).
    11. 11)
      • 28. Charef, A., Bensouici, T.: ‘Design of digital FIR variable fractional order integrator and differentiator’, Signal Image Video Process., 2012, 6, (4), pp. 679689 (doi: 10.1007/s11760-010-0197-1).
    12. 12)
      • 21. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: ‘Theory and applications of fractional differential equations’ (Elsevier, Amsterdam, Netherlands, 2006).
    13. 13)
      • 14. Ladaci, S., Charef, A.: ‘An adaptive fractional PIλ Dμ controller’. Proc. Int. Symp. series on Tools and Methods of Competitive Engineering, TMCE’2006, Ljubljana, Slovenia, 18–22 April 2006, pp. 15331540.
    14. 14)
      • 8. Monje, C.A., Ramos, F., Feliu, V., Vinagre, B.M.: ‘Tip position control of a lightweight flexible manipulator using a fractional order controller’, IET Control Theory Appl., 2007, 1, (5), pp. 14511460 (doi: 10.1049/iet-cta:20060477).
    15. 15)
      • 2. Manabe, S.: ‘The non-integer integral and its application to control systems’, ETJ Jpn., 1961, 6, (3–4), pp. 8387.
    16. 16)
      • 3. Oustaloup, A.: ‘Systèmes Asservis Linéaires d’Ordre Fractionnaire: Théorie et Pratique’ (Editions Masson, Paris, 1983) (in French).
    17. 17)
      • 12. Ladaci, S., Charef, A.: ‘On fractional adaptive control’, Nonlinear Dyn., 2006, 43, (4), pp. 365378 (doi: 10.1007/s11071-006-0159-x).
    18. 18)
      • 19. Luo, Y., Chen, Y.Q., Ahn, H.S., Pi, Y.G.: ‘Fractional order robust control for cogging effect compensation in PMSM position servo systems: stability analysis and experiments’, Control Eng. Pract., 2010, 18, (9), pp. 10221036 (doi: 10.1016/j.conengprac.2010.05.005).
    19. 19)
      • 15. Li, Y., Chen, Y.Q., Cao, Y.C.: ‘Fractional order universal adaptive stabilization’. Proc. Third IFAC Workshop on Fractional Differentiation and its Applications, Ankara, Turkey, 05–07 November 2008.
    20. 20)
      • 6. Valério, D., Sáda Costa, J.: ‘Time-domain implementation of fractional order controllers’, IEE Proc. – Control Theory Appl., 2005, 152, (5), pp. 539552 (doi: 10.1049/ip-cta:20045063).
    21. 21)
      • 11. Vinagre, B.M., Petras, I., Podlubny, I., Chen, Y.Q.: ‘Using fractional order adjustment rules and fractional order reference models in model-reference adaptive control’, Nonlinear Dyn., 2002, 29, (1–4), pp. 269279 (doi: 10.1023/A:1016504620249).
    22. 22)
      • 22. Willems, J.C., Byrnes, C.I.: ‘Global adaptive stabilization in the absence of information on the sign of the high frequency gain’. Springer, Berlin, 1984 (LNCS, 62), pp. 4957.
    23. 23)
      • 9. Oustaloup, A.: ‘La commande CRONE’ (Hermès, Paris, 1991) (in French).
    24. 24)
      • 20. Petras, I., Podlubny, I., O’Leary, P., Dorcak, I., Vinagre, B.M.: ‘Analogue realization of fractional order controllers’ (TU Kosice, Fakulta Berg, 2002).
    25. 25)
      • 18. Ladaci, S., Charef, A., Loiseau, J.J.: ‘Robust fractional adaptive control based on the strictly positive realness condition’, Int. J. Appl. Math. Comput. Sci., 2009, 19, (1), pp. 6976 (doi: 10.2478/v10006-009-0006-6).
    26. 26)
      • 16. Li, Y., Chen, Y.Q.: ‘Fractional order universal adaptive stabilization for fractional order MIMO system’. Proc. Fourth IFAC Workshop on Fractional Differentiation and its Applications, Badajoz, Spain, 18–20 October, 2010.
    27. 27)
      • 7. Charef, A.: ‘Analogue realization of fractional order integrator, differentiator and fractional PIλ Dμ controller’, IEE Proc. Control Theory Appl., 2006, 153, (6), pp. 714720 (doi: 10.1049/ip-cta:20050019).
    28. 28)
      • 10. Chen, Y.Q., Petras, I., Xue, D.: ‘Fractional order control – a tutorial’. Proc. 2009 Amer. Con. Conf., St. Louis, MO, USA, 10–12 June 2009, pp. 13971411.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2012.0309
Loading

Related content

content/journals/10.1049/iet-cta.2012.0309
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading