access icon free General framework in designing Luenberger-like non-linear observer

The problem of designing Luenberger-like observer for non-linear Lipschitz systems is addressed. Based on using the coordinate transformation, the author classify many practical approaches of observer synthesis into direct and indirect methods. A generalised Lipschitz condition and the related stability condition are then employed to establish a general framework in designing the Luenberger-like observer dealing with both methods. Moreover, the proposed framework is interpreted in terms of some linear matrix inequalities (LMIs) which allows using numerical techniques to obtain a reduced order observer. Finally, some simulation examples are given to exhibit the effectiveness of the proposed observer synthesis approach.

Inspec keywords: linear matrix inequalities; nonlinear control systems; reduced order systems; control system synthesis; observers; stability

Other keywords: direct methods; numerical techniques; Luenberger-like nonlinear observer design; coordinate transformation; nonlinear Lipschitz systems; indirect methods; stability condition; reduced order observer; observer synthesis; generalised Lipschitz condition; LMI

Subjects: Linear algebra (numerical analysis); Stability in control theory; Simulation, modelling and identification; Control system analysis and synthesis methods; Nonlinear control systems

References

    1. 1)
      • 11. Shim, H., Son, Y.I., Seo, J.H.: ‘Semi global observer for multi output nonlinear systems’, Syst. Control Lett., 2001, 42, (3), pp. 233244.
    2. 2)
      • 6. Bestle, D., Zeitz, M.: ‘Canonical form observer design for non-linear time-variable systems’, Int. J. Control, 1983, 38, (2), pp. 419431.
    3. 3)
      • 14. Raghavan, S., Hedrick, J.: ‘Observer design for a class of nonlinear systems’, Int. J. Control, 1994, 59, (2), pp. 515528.
    4. 4)
      • 3. Krener, A.J., Respondek, W.: ‘Nonlinear observers with linearizable error dynamics’, SIAM J. Control Optim., 1985, 23, (2), pp. 197216.
    5. 5)
      • 23. Zhu, F., Han, Z.: ‘A note on observers for Lipschitz nonlinear systems’, IEEE Trans. Autom. Control, 2002, 47, (10), pp. 17511754.
    6. 6)
      • 20. Röbenack, K., Lynch, A.F.: ‘High-gain nonlinear observer design using the observer canonical form’, IET Control Theory Appl., 2007, 1, (6), pp. 15741579.
    7. 7)
      • 5. Karagiannis, D., Carnevale, D., Astolfi, A.: ‘Invariante manifold based reduced order observer design for nonlinear systems’, IEEE Trans. Autom. Control, 2008, 53, (11), pp. 26022614.
    8. 8)
      • 24. Birk, J., Zeitz, M.: ‘Extended Luenberger observer for non-linear multivariable systems’, Int. J. Control, 1988, 47, (6), pp. 18231836.
    9. 9)
      • 15. Rajamani, R.: ‘Observers for Lipschitz nonlinear systems’, IEEE Trans. Autom. Control, 1998, 43, (3), pp. 397401.
    10. 10)
      • 12. Hammouri, H., Bornard, G., Busawon, K.: ‘High gain observer for structured multi-output nonlinear systems’, IEEE Trans. Autom. Control, 2010, 55, (4), pp. 987992.
    11. 11)
      • 19. Gauthier, J.P., Bornard, G.: ‘Observability for any u(t) of a class of nonlinear systems’, IEEE Trans. Autom. Control, 1981, 26, (4), pp. 922926.
    12. 12)
      • 21. Rudolph, J., Zeitz, M.: ‘A block triangular nonlinear observer normal form’, Syst. Control Lett., 1994, 23, (1), pp. 18.
    13. 13)
      • 16. Pertew, A.M., Marquez, H.J., Zhao, Q.: ‘H observer design for Lipschitz nonlinear systems’, IEEE Trans. Autom. Control, 2006, 51, (7), pp. 12111216.
    14. 14)
      • 1. Besancon, G. (Ed.): ‘Nonlinear observers and applications’ (Springer-Verlag, Germany, 2007), Ch. 1–2.
    15. 15)
      • 7. Zeitz, M.: ‘The extended Luenberger observer for nonlinear systems’, Syst. Control Lett., 1987, 9, (2), pp. 149156.
    16. 16)
      • 4. Xiao, X.H., Gao, W.B.: ‘Nonlinear observer design by observer error linearization’, SIAM J. Control Optim., 1989, 27, (1), pp. 199216.
    17. 17)
      • 25. Xiong, Y., Saif, M.: ‘Sliding mode observer for nonlinear uncertain systems’, IEEE Trans. Autom. Control, 2001, 46, (12), pp. 20122017.
    18. 18)
      • 8. Gauthier, J.P., Hammouri, H., Othman, S.: ‘A simple observer for nonlinear systems applications to bioreactors’, IEEE Trans. Autom. Control, 1992, 37, (6), pp. 875880.
    19. 19)
      • 9. Ciccarella, G., Mora, M.D., Germani, A.: ‘A Luenberger-like observer for nonlinear systems’, Int. J. Control, 1993, 57, (3), pp. 537556.
    20. 20)
      • 17. Chen, M.S., Chen, C.C.: ‘Robust nonlinear observer for Lipschitz nonlinear systems subject to disturbances’, IEEE Trans. Autom. Control, 2007, 52, (12), pp. 23652369.
    21. 21)
      • 13. Thau, F.E.: ‘Obrerving the state of nonlinear dynamic systems’, Int. J. Control, 1973, 17, (3), pp. 471479.
    22. 22)
      • 18. Ekramian, M., Hosseinnia, S., Sheikholeslam, F.: ‘Observer design for non-linear systems based on a generalised Lipschitz condition’, IET Control Theory Appl., 2011, 5, (16), pp. 18131818.
    23. 23)
      • 10. Deza, F., Bossanne, D., Busvelle, E., Gauthier, J.P., Rakotopara, D.: ‘Exponential observers for nonlinear systems’, IEEE Trans. Autom. Control, 1993, 38, (3), pp. 482484.
    24. 24)
      • 22. Cho, Y.M., Rajamani, R.: ‘A systematic approach to adaptive observer synthesis for nonlinear systems’, IEEE Trans. Autom. Control, 1997, 42, (4), pp. 534537.
    25. 25)
      • 2. Krener, A.J., Isidori, A.: ‘Linearization by output injection and nonlinear observers’, Syst. Control Lett., 1983, 3, (1), pp. 4752.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2012.0284
Loading

Related content

content/journals/10.1049/iet-cta.2012.0284
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading