access icon free Flatness-based deposition rate control of thermally evaporated organic semiconductors

The most crucial step in manufacturing organic electronic devices is the deposition of the active organic layers. This deposition is mostly achieved by thermal evaporation of special organic materials out of an evaporation cell in a high-vacuum environment. The major goal is to produce a thin layer with a well-defined deposition rate. In this study, a mathematical model of the deposition process is presented and a procedure for identifying the unknown model parameters is given. The model covers the transient evaporation of organic materials as well as the thermal behaviour of the evaporation source. A control law based on the concepts of differential flatness turned out to be superior to conventional control strategies. The controller is tested on a real world high-vacuum system using two different evaporation materials. Finally, it is demonstrated, that the proposed approach yields improved layer morphologies that are the basis of outstanding device characteristics.

Inspec keywords: vacuum deposition; semiconductor device manufacture; thin film resistors; organic light emitting diodes

Other keywords: unknown model parameter identification; flatness-based deposition rate control; thermal behaviour; deposition rate; organic electronic device manufacturing; transient organic material evaporation; high-vacuum environment; control law; deposition process; layer morphologies; evaporation cell; active organic layer deposition; mathematical model; thermally evaporated organic semiconductors; evaporation source

Subjects: Industrial processes; Control technology and theory (production); Resistors; Production facilities and engineering; Thin film circuits; Light emitting diodes; Surface treatment and coating techniques; Vacuum deposition; Optoelectronics manufacturing; Semiconductor industry; Control applications in the electronics industry

References

    1. 1)
      • 1. Lamprecht, B., Thünauer, R., Ostermann, M., Jakopic, G., Leising, G.: ‘Organic photodiodes on newspaper’, Phys. Status Solidi (a), 2005, 202, (5), pp. 5052.
    2. 2)
      • 5. Klokov, A.Y., Galkina, T.I.: ‘System for stabilization of film-deposition rate in thermal evaporation’, Instrum. Exp. Techn., 1991, 34, (5), pp. 11941197.
    3. 3)
      • 20. Hagenmeyer, V., Delaleau, E.: ‘Robustness analysis with respect to exogenous perturbations for flatness-based exact feedforward linearization’, IEEE Trans. Autom. Control, 2010, 5, pp. 727731.
    4. 4)
      • 6. Steinberger, M., Horn, M., Fian, A., Jakopic, G.: ‘Ein einfacher modellbasierter Ansatz zur Regelung der stationären Verdampfung organischer Halbleiter im Hochvakuum’, Int. J. Autom. Austria, 2011, 19, (1), pp. 1524.
    5. 5)
      • 13. Fliess, M., Levine, J., Martin, P., Rouchon, P.: ‘On differentially flat nonlinear systems’, in Fliess, M. (Ed.), ‘Nonlinear control systems design’ (1992), pp. 408412.
    6. 6)
      • 15. Rothfuß, R., Rudolph, J., Zeitz, M.: ‘Flachheit: Ein neuer zugang zur steuerung und regelung nichtlinearer systeme (Flatness: a new approach to control of nonlinear systems)’, Automatisierungstechnik, 1997, 45, pp. 517525.
    7. 7)
      • 4. Pratontep, S., Brinkmann, M., Nüesch, F., Zuppiroli, L.: ‘Correlated growth in ultrathin pentacene films on silicon oxide: effect of deposition rate’, Phys. Rev. B, 2004, 69, pp. 165201-17.
    8. 8)
      • 21. Franklin, G.F., Powell, J.D., Workman, M.L.: ‘Digital control of dynamic systems’ (Addison-Wesley, 1997).
    9. 9)
      • 12. Steinberger, M., Horn, M.: ‘Control of the thermal evaporation of organic semiconductors via exact linearization’. WASET – Int. Conf. Automation and Control Engineering, Venice, Italy, 2011.
    10. 10)
      • 11. Hagenmeyer, V., Delaleau, E.: ‘Exact feedforward linearization based on differential flatness’, Int. J. Control, 2003, 76, pp. 537556.
    11. 11)
      • 7. Steinberger, M.: ‘Modelling, simulation and control of deposition processes of organic materials’. PhD thesis, Graz University of Technology, 2011.
    12. 12)
      • 9. Steinberger, M., Fian, A., Horn, M., Jakopic, G.: ‘Investigations on the thermal behaviour of evaporation cells for small molecule organic semiconductors’. Int. Conf. Organic Electronics, Paris, France, 2010.
    13. 13)
      • 14. Fliess, M., Levine, J., Martin, P., Rouchon, P.: ‘Flatness and defect of nonlinear systems: introductory theory and examples’, Int. J. Control, 1995, 61, pp. 13271361.
    14. 14)
      • 10. IBM Corporation, ‘IBM optimization subroutine library – guide and reference’ (1995, Release 2.1).
    15. 15)
      • 18. Chen, C.: ‘Analog and digital control system design’ (Saunders College Publishing, 1993).
    16. 16)
      • 8. Steinberger, M., Horn, M., Jakopic, G.: ‘Mathematical modelling of the thermal evaporation behaviour of organic semiconductors’, at-Automatisierungstechnik, 2013, accepted for publication, doi: 10.1524/auto.2012.1042.
    17. 17)
      • 19. Hagenmeyer, V., Delaleau, E.: ‘Robustness analysis of exact feedforward linearization based on differential flatness’, Automatica, 2003, 39, pp. 19411946.
    18. 18)
      • 2. Di Carlo, A., Piacenta, F., Bolognesi, A., Stadlober, B., Maresch, H.: ‘Influence of grain sizes on the mobility of organic thin-film transistors’, Appl. Phys. Lett., 2005, 86, article id 263501, pp. 13.
    19. 19)
      • 16. Zeitz, M.: ‘Differenzielle flachheit: eine nützliche methodik auch für lineare SISO-systeme (differential flatness: a useful method also for linear SISO systems)’, at -Automatisierungstechnik, 2010, 58, pp. 513.
    20. 20)
      • 17. Hagenmeyer, V., Zeitz, M.: ‘Internal dynamics of flat nonlinear SISO systems with respect to a non-flat output’, Syst. Control Lett., 2004, 52, pp. 323327.
    21. 21)
      • 3. Knipp, D., Street, R.A., Völkel, A., Ho, J.: ‘Pentacene thin film transistors on inorganic dielectrics: morphology, structural properties and electronic transport’, J. Appl. Phys., 2003, 93, (1), pp. 347355.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2012.0211
Loading

Related content

content/journals/10.1049/iet-cta.2012.0211
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading