http://iet.metastore.ingenta.com
1887

Bounded real lemma for positive discrete systems

Bounded real lemma for positive discrete systems

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The bounded real lemma for positive discrete time-invariant systems is addressed in this study. The results about bounded real lemma for continuous time-invariant systems are extended into discrete time-invariant systems. Such systems are asymptotically stable and their H norm less than one is equivalent to that the corresponding linear matrix inequality admits a diagonal positive-definite solution. The last example in this study illustrates the result does not hold for general discrete time-invariant systems.

References

    1. 1)
      • 1. Farina, L.: ‘On the existence of a positive realization’, Syst. Control Lett., 1996, 28, (4), pp. 219226 (doi: 10.1016/0167-6911(96)00033-3).
    2. 2)
      • 2. van den Hof, J.M.: ‘Realization of continuous-time positive linear systems’, Syst. Control Lett., 1997, 31, (4), pp. 243253 (doi: 10.1016/S0167-6911(97)00049-2).
    3. 3)
      • 3. Kaczorek, T.: ‘Realization problem for discrete-time positive linear systems’, Appl. Math. Comput. Sci., 1997, 7, (1), pp. 117124.
    4. 4)
      • 4. Kaczorek, T.: ‘Realization problem for positive multivariable discrete-time linear systems with delays in the state vector and inputs’, Int. J. Appl. Math. Comput. Sci., 2006, 16, (2), pp. 169174.
    5. 5)
      • 5. Kaczorek, T.: ‘Reachability and controllability of 2D positive linear systems with state feedbacks’, Control Cybern., 2000, 19, (1), pp. 141151.
    6. 6)
      • 6. Rumchev, V.G., Adeane, J.: ‘Reachability and controllability of time-variant discrete-time positive linear systems’, Control Cybern., 2004, 33, (1), pp. 8594.
    7. 7)
      • 7. Valcher, M.E.: ‘On the reachability properties of continuous-time positive systems’, Proc. 16th Mediterranean Conf. Control and Automation Congress Centre, 2008, pp. 990995.
    8. 8)
      • 8. Valcher, M.E., Santesso, P.: ‘On the reachability of single-input positive switched systems’, IEEE Conf. Decision and Control, 2008, pp. 947952.
    9. 9)
      • 9. Farina, L., Rinaldi, S.: ‘Positive linear systems: theory and applications’ (Wiley-Interscience, New York, 2000).
    10. 10)
      • 10. Liu, X., Yu, W., Wang, L.: ‘Stability analysis of positive systems with bounded time-varying delays’, IEEE Trans. Circuits Syst. II, 2009, 56, (7), pp. 600604 (doi: 10.1109/TCSII.2009.2023305).
    11. 11)
      • 11. Haddad, W.M., Chellaboina, V.: ‘Stability theory for nonnegative and compartmental dynamical systems with time delay’, Syst. Control Lett., 2004, 51, (5), pp. 355361 (doi: 10.1016/j.sysconle.2003.09.006).
    12. 12)
      • 12. Virnik, E.: ‘Stability analysis of positive descriptor systems’, Linear Algebr. Appl., 2008, 429, (10), pp. 26402659 (doi: 10.1016/j.laa.2008.03.002).
    13. 13)
      • 13. Liu, X., Yu, W., Wang, L.: ‘Stability analysis for continuous-time positive systems with time-varying delays’, IEEE Trans. Autom. Control, 2010, 55, (4), pp. 10241028 (doi: 10.1109/TAC.2010.2041982).
    14. 14)
      • 14. Mason, O.: ‘Diagonal Riccati stability and positive time-delay systems’, Syst. Control Lett., 2012, 61, (1), pp. 610 (doi: 10.1016/j.sysconle.2011.09.022).
    15. 15)
      • 15. Rami, M.A., Helmke, U., Tadeo, F.: ‘Positive observation problem for linear time-delay positive systems’, Proc. 15th Mediterranean Conf. Control and Automation, 2007, pp. 16.
    16. 16)
      • 16. Liu, X.: ‘Constrained control of positive systems with delays’, IEEE Trans. Autom. Control, 2009, 54, (7), pp. 15961600 (doi: 10.1109/TAC.2009.2017961).
    17. 17)
      • 17. Li, P., Lam, J., Wang, Z.: ‘H model reduction for positive systems’, American Control Conf., 2010, pp. 62446249.
    18. 18)
      • 18. Li, P., Lam, J., Shu, Z.: ‘H positive filtering for positive linear discrete-time systems: an augmentation approach’, IEEE Trans. Autom. Control, 2010, 55, (10), pp. 23372342 (doi: 10.1109/TAC.2010.2053471).
    19. 19)
      • 19. Boyd, S., Ghaoui, L.E., Feron, E., Balakrishnana, V.: ‘Linear matrix inequalities in system and control theory’ (SIAM, Philadephia, PA, 1994).
    20. 20)
      • 20. de Souza, C.E, Xie, L.: ‘On the discrete-time bounded real lemma with application in the characterization of static state-feedback H controllers’, Syst. Control Lett., 1992, 18, (1), pp. 6171 (doi: 10.1016/0167-6911(92)90108-5).
    21. 21)
      • 21. Shaked, U., Suplin, V.: ‘A new bounded real lemma representation for the continuous-time case’, IEEE Trans. Autom. Control, 2001, 46, (9), pp. 14201426 (doi: 10.1109/9.948470).
    22. 22)
      • 22. Xu, S., Lam, J., Zou, Y.: ‘New versions of bounded real lemmas for continuous and discrete uncertain systems’, Circuits Syst. Signal Process., 2007, 26, (6), pp. 829838 (doi: 10.1007/s00034-007-9000-0).
    23. 23)
      • 23. Zhang, G., Xia, Y., Shi, P.: ‘New bounded real lemma for discrete-time singular systems’, Automatica, 2008, 44, (3), pp. 886890 (doi: 10.1016/j.automatica.2007.07.017).
    24. 24)
      • 24. Xu, S., Lam, J.: ‘Robust Control and Filtering of Singular Systems’ (Spring-Verlag, Berlin, Heidelberg, 2006).
    25. 25)
      • 25. Chadli, M., Darouach, M.: ‘Novel bounded real lemma for discrete-time descriptor systems: application to H control design’, Automatica, 2012, 48, (2), pp. 449453 (doi: 10.1016/j.automatica.2011.10.003).
    26. 26)
      • 26. Fridman, E., Shaked, U.: ‘New bounded real lemma representation for time-delay systems and thier application’, IEEE Trans. Autom. Control, 2001, 46, (12), pp. 19731979 (doi: 10.1109/9.975503).
    27. 27)
      • 27. Shaked, U., Yaesh, I., de Souza, C.I.: ‘Bounded real criteria for linear time-delay systems’, IEEE Trans. Autom. Control, 1998, 43, (7), pp. 10161022 (doi: 10.1109/9.701117).
    28. 28)
      • 28. Du, C., Xie, L., Zhang, C.: H control and robust stabilization of two-dimensional systems in Roesser models’, Automatica, 2001, 37, (2), pp. 205211 (doi: 10.1016/S0005-1098(00)00155-2).
    29. 29)
      • 29. Berman, N., Shaked, U.: ‘H control for discrete-time nonlinear stochastic systems’. IEEE Conf. Decision and Control2004, pp. 25782583.
    30. 30)
      • 30. Hou, T., Zhang, W., Ma, H.: ‘Finite horizon H2 /H control for discrete-time stochastic systems with Markovian jumps and multiplicative noise’, IEEE Trans. Autom. Control, 2010, 55, (5), pp. 11851191 (doi: 10.1109/TAC.2010.2041987).
    31. 31)
      • 31. Tanaka, T., Langbort, C.: ‘The bounded real lemma for internally positive systems and H-Infinity structure static state feedback’, IEEE Trans. Autom. Control, 2011, 56, (9), pp. 22182223 (doi: 10.1109/TAC.2011.2157394).
    32. 32)
      • 32. Berman, A., Plemmons, R.J.: ‘Nonnegative Matrices in the Mathematical Sciences’ (SIAM, Philadephia, PA, 1994).
    33. 33)
      • 33. Barvinok, A.: ‘A Course in Convexity’ (Cambridge University Press, New York, 2003).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2012.0167
Loading

Related content

content/journals/10.1049/iet-cta.2012.0167
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address