http://iet.metastore.ingenta.com
1887

Communication channel sharing-based network-induced delay and packet dropout compensation for networked control systems

Communication channel sharing-based network-induced delay and packet dropout compensation for networked control systems

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study is concerned with the problem of dual communication channels sharing-based network-induced delay and packet dropout compensation for continuous-time networked control systems (NCSs). By introducing the dual communication channels sharing-based compensation method, a new closed-loop model for continuous-time NCSs, which can receive more than one control input during a control input updating time interval, is established. Based on the newly established model and a new Lyapunov functional, an effective controller design criterion is derived to optimise the H performance of the considered systems. Even for NCSs without considering network-induced delay and packet dropout compensation, the newly derived controller design method is also applicable. Two numerical examples are given to illustrate the merits and effectiveness of the proposed compensation method.

References

    1. 1)
      • 1. Jiang, X., Han, Q.-L.: ‘New stability criteria for linear systems with interval time-varying delay’, Automatica, 2008, 44, (10), pp. 26802685 (doi: 10.1016/j.automatica.2008.02.020).
    2. 2)
      • 2. Gao, H., Chen, T., Lam, J.: ‘A new delay system approach to network-based control’, Automatica, 2008, 44, (1), pp. 3952 (doi: 10.1016/j.automatica.2007.04.020).
    3. 3)
      • 3. Yue, D., Tian, E., Wang, Z., Lam, J.: ‘Stabilization of systems with probabilistic interval input delays and its applications to networked control systems’, IEEE Trans. Syst. Man Cybern. A, Syst. Humans, 2009, 39, (4), pp. 939945 (doi: 10.1109/TSMCA.2009.2019875).
    4. 4)
      • 4. Wu, M., He, Y., She, J.-H., Liu, G.-P.: ‘Delay-dependent criteria for robust stability of time-varying delay systems’, Automatica, 2004, 40, (8), pp. 14351439 (doi: 10.1016/j.automatica.2004.03.004).
    5. 5)
      • 5. Zhu, X.-L., Yang, G.-H.: ‘Jensen integral inequality approach to stability analysis of continuous-time systems with time-varying delay’, IET Control Theory Applic., 2008, 2, (6), pp. 524534 (doi: 10.1049/iet-cta:20070298).
    6. 6)
      • 6. Zhang, W.-A., Yu, L.: ‘Modelling and control of networked control systems with both network-induced delay and packet-dropout’, Automatica, 2008, 44, (12), pp. 32063210 (doi: 10.1016/j.automatica.2008.09.001).
    7. 7)
      • 7. Shao, H.: ‘New delay-dependent stability criteria for systems with interval delay’, Automatica, 2009, 45, (3), pp. 744449 (doi: 10.1016/j.automatica.2008.09.010).
    8. 8)
      • 8. Sun, J., Liu, G.P., Chen, J., Rees, D.: ‘Improved delay-range-dependent stability criteria for linear systems with time-varying delays’, Automatica, 2010, 46, (2), pp. 466470 (doi: 10.1016/j.automatica.2009.11.002).
    9. 9)
      • 9. Zhang, B., Xu, S., Zou, Y.: ‘Improved stability criterion and its applications in delayed controller design for discrete-time systems’, Automatica, 2008, 44, (11), pp. 29632967 (doi: 10.1016/j.automatica.2008.04.017).
    10. 10)
      • 10. Chen, K.F., Fong, I.K.: ‘Stability analysis and output-feedback stabilisation of discrete-time systems with an interval time-varying state delay’, IET Control Theory Applic., 2010, 4, (4), pp. 563572 (doi: 10.1049/iet-cta.2009.0100).
    11. 11)
      • 11. Hu, S., Zhang, Y., Du, Z.: ‘Network-based H tracking control with event-triggering sampling scheme’, IET Control Theory Applic., 2012, 6, (4), pp. 533544 (doi: 10.1049/iet-cta.2011.0055).
    12. 12)
      • 12. Xiong, J., Lam, J.: ‘Stabilization of linear systems over networks with bounded packet loss’, Automatica, 2007, 43, (1), pp. 8087 (doi: 10.1016/j.automatica.2006.07.017).
    13. 13)
      • 13. Sun, Y., Qin, S.: ‘Stability of networked control systems with packet dropout: an average dwell time approach’, IET Control Theory Applic., 2011, 5, (1), pp. 4753 (doi: 10.1049/iet-cta.2009.0331).
    14. 14)
      • 14. Wu, D., Wu, J., Chen, S.: ‘Separation principle for networked control systems with multiple-packet transmission’, IET Control Theory Applic., 2011, 5, (3), pp. 507513 (doi: 10.1049/iet-cta.2009.0436).
    15. 15)
      • 15. Guo, Y.F., Li, S.Y.: ‘Transmission probability condition for stabilisability of networked control systems’, IET Control Theory Applic., 2010, 4, (4), pp. 672682 (doi: 10.1049/iet-cta.2008.0407).
    16. 16)
      • 16. Addad, B., Amari, S., Lesage, J.-J.: ‘A virtual-queuing-based algorithm for delay evaluation in networked control systems’, IEEE Trans. Ind. Electron., 2011, 58, (9), pp. 44714479 (doi: 10.1109/TIE.2010.2098358).
    17. 17)
      • 17. Onat, A., Naskali, T., Parlakay, E., Mutluer, O.: ‘Control over imperfect networks: model-based predictive networked control systems’, IEEE Trans. Ind. Electron., 2011, 58, (3), pp. 905913 (doi: 10.1109/TIE.2010.2051932).
    18. 18)
      • 18. Quevedo, D.E., Nešić, D.: ‘Input-to-state stability of packetized predictive control over unreliable networks affected by packet-dropouts’, IEEE Trans. Autom. Control, 2011, 56, (2), pp. 370375 (doi: 10.1109/TAC.2010.2095950).
    19. 19)
      • 19. Yu, M., Wang, L., Chu, T., Hao, F.: ‘Stabilization of networked control systems with data packet dropout and transmission delays: continuous-time case’, Eur. J. Control, 2005, 11, pp. 4049 (doi: 10.3166/ejc.11.40-49).
    20. 20)
      • 20. Gao, H., Chen, T.: ‘Network-based H output tracking control’, IEEE Trans. Autom. Control, 2008, 53, (3), pp. 655667 (doi: 10.1109/TAC.2008.919850).
    21. 21)
      • 21. Wang, Y.-L., Yang, G.-H.: ‘Output tracking control for networked control systems with time delays and packet dropout’, Int. J. Control, 2008, 81, (11), pp. 17091719 (doi: 10.1080/00207170701836944).
    22. 22)
      • 22. Peng, C., Tian, Y.-C., Yue, D.: ‘Output feedback control of discrete time systems in networked environments’, IEEE Trans. Syst. Man Cybern.- A, Syst. Humans, 2011, 41, (1), pp. 185190 (doi: 10.1109/TSMCA.2010.2055155).
    23. 23)
      • 23. Yue, D., Han, Q.-L., Lam, J.: ‘Network-based robust H control of systems with uncertainty’, Automatica, 2005, 41, (6), pp. 9991007 (doi: 10.1016/j.automatica.2004.12.011).
    24. 24)
      • 24. Jiang, X., Han, Q.-L., Liu, S., Xue, A.: ‘A new H stabilization criterion for networked control systems’, IEEE Trans. Autom. Control, 2008, 53, (4), pp. 10251032 (doi: 10.1109/TAC.2008.919547).
    25. 25)
      • 25. Kim, S.H., Park, P., Jeong, C.: ‘A generalized direct-form delta operator-based IIR filter with minimum noise gain and sensitivity’, IET Control Theory Applic., 2010, 4, (9), pp. 18281837 (doi: 10.1049/iet-cta.2009.0346).
    26. 26)
      • 26. Tian, E., Yue, D., Peng, C.: ‘Reliable control for networked control systems with probabilistic sensors and actuators faults’, IET Control Theory Applic., 2010, 4, (8), pp. 14781488 (doi: 10.1049/iet-cta.2009.0441).
    27. 27)
      • 27. Tian, Y.-C., Levy, D.: ‘Compensation for control packet dropout in networked control systems’, Inf. Sci., 2008, 178, (5), pp. 12631278 (doi: 10.1016/j.ins.2007.10.012).
    28. 28)
      • 28. Yoo, H.-J., Ryu, H.-S., Yoo, K.-S., Kwon, O.-K.: ‘Compensation of networked control systems using LMI-based delay-dependent optimization method’. Proc. 41st SICE Annual Conf., 2002, pp. 364369.
    29. 29)
      • 29. Wang, Y.-L., Yang, G.-H.: ‘Multiple communication channels-based packet dropout compensation for networked control systems’, IET Control Theory Applic., 2008, 2, (8), pp. 717727 (doi: 10.1049/iet-cta:20070352).
    30. 30)
      • 30. Garuntu, C.-F., Lazar, C.: ‘Robustly stabilising model predictive control design for networked control systems with an application to direct current motors’, IET Control Theory Applic., 2012, 6, (7), pp. 943952 (doi: 10.1049/iet-cta.2011.0103).
    31. 31)
      • 31. Wu, J, Chen, T.: ‘Design of networked control systems with packet dropouts’, IEEE Trans. Autom. Control, 2007, 52, (7), pp. 13141319 (doi: 10.1109/TAC.2007.900839).
    32. 32)
      • 32. Tipsuwan, Y., Chow, M.-Y.: ‘Gain scheduler middleware: a methodology to enable existing controllers for networked control and teleoperation – part I: networked control’, IEEE Trans. Ind. Electron., 2004, 51, (6), pp. 12181227 (doi: 10.1109/TIE.2004.837866).
    33. 33)
      • 33. Gu, K., Kharitonov, V.L., Chen, J.: ‘Stability of time-delay systems’ (Birkhäuser, Boston, 2003).
    34. 34)
      • 34. Zhang, W., Branicky, M.S., Phillips, S.M.: ‘Stability of networked control systems’, IEEE Control Syst. Mag., 2001, 21, (1), pp. 8499 (doi: 10.1109/37.898794).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2012.0034
Loading

Related content

content/journals/10.1049/iet-cta.2012.0034
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address