Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Robust ℋ2 control applied to boost converters: design, experimental validation and performance analysis

Robust ℋ2 control applied to boost converters: design, experimental validation and performance analysis

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study proposes a design procedure and experimental validation for a robust ℋ2 state feedback controller applied to a DC–DC boost converter modelled as a linear system affected by time-varying parameters lying in known intervals. The parameters considered as time-varying are the input voltage, the load resistance and the operating point duty cycle. A polytopic representation of the system is derived and the controller is designed by means of a convex optimisation problem based on linear matrix inequalities. The conventional ℋ2 controller is extended to cope with alpha-stability and robust linear quadratic regulator design, providing different strategies to trade-off the magnitude of the control gains and the response of the closed-loop system. Tight correspondences between numerical simulations and the experimental results prove the viability of the application of this technique for this kind of plant. Finally, a robust performance analysis illustrates the capacity of the closed-loop system to reject energy bounded disturbances, with interpretation for the cases of time-varying and time-invariant parameters.

References

    1. 1)
    2. 2)
      • Olalla, C., Leyva, R., El Aroudi, A., Queinnec, I., Tarbouriech, S.: `ℋ', Proc. 35th Annual Conf. IEEE Industrial Electronics Society (IECON 2009), November 2009, Porto, Portugal, p. 548–553.
    3. 3)
      • Alvarez-Ramirez, J., Espinosa-Perez, G., Noriega-Pineda, D.: `Current-mode control of DC–DC power converters: a backstepping approach', Proc. 2001 IEEE Int. Conf. on Control Applications, September 2001, Mexico City, Mexico, p. 190–195.
    4. 4)
    5. 5)
      • M. Green , D.J.N. Limebeer . (1996) Linear robust control.
    6. 6)
      • Ma, M., Chen, H.: `Constrained ℋ', Proc. 25th Chinese Control Conf. (CCC 2006), August 2006, Harbin, Heilongjiang, China, p. 702–707.
    7. 7)
      • R. Erickson , D. Maksimovic . (2000) Fundamentals of power electronics.
    8. 8)
      • L.E. Ghaoui , S.I. Niculescu . (2000) Advances in linear matrix inequality methods in control, Adv. Des. Control. Ser..
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
      • J.G. Kassakian , M.F. Schlecht , G.C. Verghese . (1991) Principles of power electronics.
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
      • K. Ogata . (1997) Modern control engineering.
    21. 21)
      • M.H. Rashid . (2006) Power electronics handbook: devices, circuits, and applications.
    22. 22)
      • S. Ang , A. Oliva . (2005) Power-switching converters.
    23. 23)
      • P. Gahinet , A. Nemirovskii , A.J. Laub , M. Chilali . (1995) LMI control toolbox user’s guide.
    24. 24)
      • P. Dorato , C.T. Abdallah , V. Cerone . (2000) Linear quadratic control: an introduction.
    25. 25)
    26. 26)
    27. 27)
    28. 28)
    29. 29)
    30. 30)
      • Montagner, V.F., Peres, P.L.D.: `ℋ', Proc. 2003 IEEE Int. Symp. on Industrial Electronics (ISIE-2003), June 2003, Rio de Janeiro, Brazil.
    31. 31)
    32. 32)
      • N. Mohan , T.M. Undeland , W.P. Robbins . (2003) Power electronics: converters, applications, design.
    33. 33)
    34. 34)
      • S. Boyd , L.E. Ghaoui , E. Feron , V. Balakrishnan . (1994) Linear matrix inequalities in system and control theory.
    35. 35)
      • Dupont, F., Rech, C., Gules, R., Pinheiro, J.: `Analysis and design of a control approach for a boost converter with voltage multiplier cell', Proc. 2011 Brazilian Power Electronics Conf. (COBEP), September 2011, Natal, RN, Brazil, p. 444–450.
    36. 36)
    37. 37)
    38. 38)
    39. 39)
      • Montagner, V.F., Peres, P.L.D.: `Robust state feedback control applied to a UPS system', Proc. 29th Annual Conf. IEEE Industrial Electronics Society (IECON 2003), November 2003, Roanoke, VA, USA, 1, p. 2245–2250.
    40. 40)
      • R. Teodorescu , M. Liserre , P. Rodríguez , F. Blaabjerg . (2011) Grid converters for photovoltaic and wind power systems.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2011.0755
Loading

Related content

content/journals/10.1049/iet-cta.2011.0755
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address