Distributed thermal aware load balancing for cooling of modular data centres

Distributed thermal aware load balancing for cooling of modular data centres

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Thermal management in data centres requires a complicated trade-off between cooling costs and thermally induced equipment failure rates. Using ideas from cooperative control and distributed rate limiting, in this study the authors describe a distributed architecture that can be used for thermal aware load balancing for a common type of modular data centre; namely an algorithm that, for a given demand D*, distributes load to individual machines such that the temperatures in the individual modules are equalised. The benefit of shifting load based on thermal considerations is that significant gains in cooling cost can be achieved. We evaluate the performance of the algorithm using computational fluid dynamics and Matlab simulations. The results show that significant cost savings can be made by applying such algorithms, and that these can be achieved without the need for detailed modelling and tuning of controllers.


    1. 1)
      • 1. Coles, H.C., Bramfitt, M.: ‘Modular/container data centers procurement guide: optimizing for energy efficiency and quick deployment’, Lawrence Berkeley National Laboratory, February2011. Available at
    2. 2)
      • 2. Moore, J., Chase, J.S., Ranganathan, P., Sharma, R.: ‘Making scheduling ‘Cool’: temperature-aware workload placement in data centers’. Proc. USENIX, Anaheim, April 2005, pp 6175.
    3. 3)
      • 3. Anderson, D., Dykes, J., Riedel, E.: ‘More than an interface – SCSI vs. ATA’. Proc. Second USENIX Conf. File and Storage Technologies, San Francisco, April 2003, pp 245257.
    4. 4)
      • 4. Rumsey, P.: ‘Overview of liquid cooling systems’, 2007.
    5. 5)
      • 5. Almoli, A., Thompson, A., Kapur, N., Summers, J., Thompson, H., Hannah, G.: ‘Computational fluid dynamic investigation of liquid rack cooling in data centres’, Appl. Energy, 2012, 89, pp. 150155 (doi: 10.1016/j.apenergy.2011.02.003).
    6. 6)
      • 6. Patel, C.D., Bash, C.E., Sharma, R.: ‘Smart cooling of data centers’. Proc. IPACK, Maui, 6–11 July 2003, pp. 128137.
    7. 7)
      • 7. Sharma, R.K., Bash, C.E., Patel, C.D.: ‘Balance of power: Dynamic thermal management for internet data centers’, IEEE Int. Comput., 2005, 9, (1), pp. 4249 (doi: 10.1109/MIC.2005.10).
    8. 8)
      • 8. Das, R., Kephart, J.O., Lenchner, J., Hamann, H.: ‘Utility-function-driven energy-efficient cooling in data centers’. Proc. Seventh Int. Conf. Autonomic Computing, Washington, June 2010, pp 6170.
    9. 9)
      • 9. Parolini, L., Tolia, N., Sinopoli, B., Krogh, B.H.: ‘A cyber-physical systems approach to energy management in data centers’. Proc. First ACM/IEEE Int. Conf. Cyber-Physical Systems, Stockholm, April 2010.
    10. 10)
      • 10. Faraz, A., Vijaykumar, T.N.: ‘Joint optimization of idle and cooling power in data centers while maintaining response time’. Proc. ASPLOS, Pittsburgh, 13–17 March 2010, pp. 243256.
    11. 11)
      • 11. Barroso, L.A., Hölze, U.: ‘The case for energy-proportional computing’, IEEE Comput., 2007, 40, (12), pp. 3337 (doi: 10.1109/MC.2007.443).
    12. 12)
      • 12. Corporation, M.G.: Flovent version 9.1, 2010.
    13. 13)
      • 13. Knorn, F., Corless, M.J., Shorten, R.N.: ‘Results in cooperative control and implicit consensus’, Int. J. Control, 2011, 84, (3), pp. 476495 (doi: 10.1080/00207179.2011.561442).
    14. 14)
      • 14. Stanojević, R., Shorten, R.: ‘Generalized distributed rate limiting’. Proc. IWQoS, Charleston, July 2009, pp 19.
    15. 15)
      • 15. Jadbabaie, A., Lin, J., Morse, A.S.: ‘Coordination of groups of mobile autonomous agents using nearest neighbour rules’, IEEE Trans. Autom. Control, 2003, 48, (6), pp. 9881001 (doi: 10.1109/TAC.2003.812781).
    16. 16)
      • 16. Olfati-Saber, R., Murray, R.M.: ‘Consensus protocols for networks of dynamic agents’. Proc. American Control Conf., Denver, 4–6 June 2003, vol. 2, pp. 951956.
    17. 17)
      • 17. Lin, J., Morse, A.S., Anderson, B.D.O.: ‘The multi-agent rendezvous problem’. Proc. IEEE Conf. Decision and Control, Maui, 9–12 December 2003, vol. 2, pp. 15081513.
    18. 18)
      • 18. Moreau, L.: ‘Stability of multiagent systems with time-dependent communication links’, IEEE Trans. Autom. Control, 2005, 50, (2), pp. 169182 (doi: 10.1109/TAC.2004.841888).
    19. 19)
      • 19. Pervil, M., Kangasharju, J.: ‘Cold air containment’. Proc. ACM SIGCOMM Workshop on Green Networking, Toronto, August 2011, pp. 712.
    20. 20)
      • 20. Barroso, L.A., Hölzle, U.: ‘The datacenter as a computer: an introduction to the design of warehouse-scale machines’, in Hill, M.D. (Ed): ‘Synthesis Lectures on Computer Architecture’ (Morgan & Claypool, 2009).
    21. 21)
      • 21. Patterson, M.K., Fenwick, D.: ‘The state of datacenter cooling’. Available at
    22. 22)
      • 22. ASHRAE Technical Committee 9.9. 2011 thermal guidelines for data processing environments – expanded data center classes and usage guidance, 2011. Whitepaper – 2011 Thermal Guidelines for Data Processing Environments.pdf.

Related content

This is a required field
Please enter a valid email address