Integrated trade-off design of fault detection system for linear discrete time-varying systems

Integrated trade-off design of fault detection system for linear discrete time-varying systems

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, the problem of fault detection (FD) system design for linear discrete time-varying systems is addressed. Different from most existing methods which separately handle residual generator and evaluator, this study focuses on integrated design of residual generator and evaluator. Instead of traditional trade-off design between sensitivity to faults and robustness to disturbances, this study aims at maximising FD rate given a predefined false alarm rate. The proposed approach in this study follows two steps: first, in the norm-based framework, the parity relation-based offline FD system achieves maximal FD rate by minimising the set of undetectable faults; then the optimal offline FD system is equivalently transformed into a recursive FD algorithm for online use. Relationship between the obtained solution in this study and the existing ones is analysed. The performance improvement of the proposed approach is illustrated by comparing against existing methods through Monte Carlo simulations.


    1. 1)
      • 1. Chen, J., Ratton, R.J.: ‘Robust model-based fault diagnosis for dynamic systems’ (Kluwer Academic Publishers, 1999).
    2. 2)
      • 2. Basseville, M., Nikiforov, I.: ‘Detection of abrupt changes – theory and application’ (Prentice-Hall, 1993).
    3. 3)
      • 3. Ding, S.X.: ‘Model-based fault diagnosis techniques: design schemes, algorithms, and tools’ (Springer-Verlag, 2008).
    4. 4)
      • 4. Mao, Z.H., Jiang, B., Shi, P.: ‘H∞ fault detection filter design for networked control systems modelled by discrete Markovian jump systems’, IET Control Theory  Appl., 2007, 1, (5), pp. 13361343 (doi: 10.1049/iet-cta:20060431).
    5. 5)
      • 5. Zhang, P., Ding, S.X., Liu, P.: ‘A lifting based approach to observer based fault detection of linear periodic systems’, IEEE Trans. Autom. Control, 2012, 2, (57), pp. 457462 (doi: 10.1109/TAC.2011.2166712).
    6. 6)
      • 6. Han, Y., Oh, S., Choi, B., Kwak, D., Kim, H.J., Kim, Y.: ‘Fault detection and identification of aircraft control surface using adaptive observer and input bias estimator’, IET Control Theory  Appl., 2012, 10, (6), pp. 13671387 (doi: 10.1049/iet-cta.2010.0724).
    7. 7)
      • 7. Zhong, M., Zhou, D., Ding, S.X.: ‘On designing H fault detection filter for linear discrete time-varying systems’, IEEE Trans. Autom. Control, 2010, 55, (7), pp. 16891695 (doi: 10.1109/TAC.2010.2046921).
    8. 8)
      • 8. Henry, D., Zolghadri, A.: ‘Norm-based design of robust FDI schemes for uncertain systems under feedback control: Comparison of two approaches’, Control Eng. Pract., 2006, 14, (9), pp. 10811097 (doi: 10.1016/j.conengprac.2005.06.007).
    9. 9)
      • 9. Zhao, H., Zhong, M., Zhang, M.: ‘H∞ fault detection for linear discrete time-varying systems with delayed state’, IET Control Theory  Appl., 2010, 4, (11), pp. 23032314 (doi: 10.1049/iet-cta.2009.0215).
    10. 10)
      • 10. Yao, X., Wu, L., Zheng, W.: ‘Fault detection filter design for Markovian jump singular systems with intermittent measurements’, IEEE Trans. Signal Process., 2011, 7, (59)..
    11. 11)
      • 11. Dai, X., Gao, Z., Breikin, T., Wang, H.: ‘Zero assignment for robust H2/H∞ fault detection filter design’, IEEE Trans. Signal Process., 2009, 57, (4), pp. 13631372 (doi: 10.1109/TSP.2008.2010598).
    12. 12)
      • 12. Johansson, A., Bask, M., Norlander, T.: ‘Dynamic threshold generators for robust fault detection in linear systems with parameter uncertainty’, Automatica, 2006, 42, (7), pp. 10951106 (doi: 10.1016/j.automatica.2006.02.009).
    13. 13)
      • 13. Rambeaux, F., Hamelin, F., Sauter, D.: ‘Optimal thresholding for robust fault detection of uncertain systems’, Int. J. Robust and Nonlinear Control, 2000, 10, (14), pp. 11551173 (doi: 10.1002/1099-1239(20001215)10:14<1155::AID-RNC521>3.0.CO;2-V).
    14. 14)
      • 14. Ding, S.X., Frank, P.M., Ding, E.L., Jeinsch, T.: ‘Fault detection system design based on a new trade-off strategy’. Proc. 39th IEEE Conf. Decision and Control, Sydney, Australia, 2000, pp. 41444149.
    15. 15)
      • 15. Zhang, P., Ding, S.X.: ‘An integrated trade-off design of observer based fault detection systems’, Automatica, 2008, 44, (7), pp. 18861894 (doi: 10.1016/j.automatica.2007.11.021).
    16. 16)
      • 16. Ding, S.X., Guo, L.: ‘An approach to time domain optimization of observer-based fault detection systems’, Int. J. Control, 1998, 69, (3), pp. 419442 (doi: 10.1080/002071798222749).
    17. 17)
      • 17. Ding, S.X., Jeinsch, T., Frank, P.M., Ding, E.L.: ‘A unified approach to the optimization of fault detection systems’, Int. J. Adapt. Control Signal Process., 2000, 14, (7), pp. 725745 (doi: 10.1002/1099-1115(200011)14:7<725::AID-ACS618>3.0.CO;2-Q).
    18. 18)
      • 18. Li, X., Zhou, K.: ‘A time domain approach to robust fault detection of linear time-varying systems’, Automatica, 2009, 45, (1), pp. 94102 (doi: 10.1016/j.automatica.2008.07.017).
    19. 19)
      • 19. Zhong, M., Ding, S.X., Ding, E.L.: ‘Optimal fault detection for linear discrete time-varying systems’, Automatica, 2010, 46, (8), pp. 13951400 (doi: 10.1016/j.automatica.2010.05.022).
    20. 20)
      • 20. Li, X., Mo, S., Zhou, K.: ‘Fault detection for linear discrete time-varying systems’. Proc. 49th IEEE Conf. Decision and Control, Atlanta, GA, USA, 2010, pp. 762767.
    21. 21)
      • 21. Anderson, B.D.O., Moore, J.B.: ‘Detectability and stabilizability of time-varying discrete-time linear systems’, SIAM J. Control Opt., 1981, 19, (1), pp. 2032 (doi: 10.1137/0319002).
    22. 22)
      • 22. Li, X.: ‘Fault detection filter design for linear systems’. PhD thesis, Department of Electrical and Computer Engineering, Louisiana State University, 2009.
    23. 23)
      • 23. Liu, N., Zhou, K.: ‘Optimal robust fault detection for linear discrete time systems’. Proc. 46th IEEE Conf. Decision and Control, New Orleans, LA, 2007, pp. 989994.
    24. 24)
      • 24. Zhang, F.: ‘The Schur complement and its applications’ (Springer Science, 2005).

Related content

This is a required field
Please enter a valid email address