access icon free Global output feedback stabilisation for a class of uncertain non-linear systems

This study addresses the problem of global stabilisation by output feedback for a class of uncertain non-linear systems whose output functions are not precisely known. To solve the problem, the authors first construct a new observer and then use the adding one power integrator technique to design a linear controller to globally stabilise the uncertain non-linear system. It is shown that global exponential stability of the closed-loop system is guaranteed by an appropriate choice of the design parameters.

Inspec keywords: asymptotic stability; uncertain systems; closed loop systems; control system synthesis; feedback; nonlinear systems; observers

Other keywords: closed-loop system; global exponential stability; observer; global output feedback stabilisation; design parameters; power integrator technique; uncertain nonlinear systems; output functions; linear controller design

Subjects: Simulation, modelling and identification; Stability in control theory; Control system analysis and synthesis methods; Nonlinear control systems

References

    1. 1)
      • 6. Ding, Z.: ‘Global output feedback stabilization of nonlinear systems with nonlinearity of unmeasured states’, IEEE Trans. Autom. Control, 2009, 54, (5), pp. 11171122.
    2. 2)
      • 7. Ye, H., Gui, W., Jiang, Z.: ‘Backstepping design for cascade systems with relaxed assumption on Lyapunov functions’, IET Control Theory Appl., 2011, 5, (5), pp. 700712.
    3. 3)
      • 19. Tsinias, J.: ‘A theorem on global stabilization of nonlinear systems by linear feedback’, Syst. Control Lett., 1991, 17, (5), pp. 357362.
    4. 4)
      • 1. Kanellakopoulos, I., Kokotovic, P., Morse, A.: ‘Systematic design of adaptive controllers for feedback linearizable systems’, IEEE Trans. Autom. Control, 1991, 36, (11), pp. 12411253.
    5. 5)
      • 14. Choi, H., Lim, J.: ‘Stabilization of a class of nonlinear systems by adaptive output feedback’, Automatica, 2005, 41, (6), pp. 10911097.
    6. 6)
      • 16. Yan, X., Liu, Y.: ‘Global output-feedback asymptotic stabilization for a class of uncertain nonlinear systems with unknown growth rate’. Proc. 30th Chinese Control Conf., Yantai, China, July 2011, pp. 65566561.
    7. 7)
      • 10. Liu, L., Huang, J.: ‘Global robust output regulation of output feedback systems with unknown high-frequency gain sign’, IEEE Trans. Autom. Control, 2006, 51, (4), pp. 625631.
    8. 8)
      • 11. Mazenc, F., Praly, L., Dayawansa, W.: ‘Global stabilization by output feedback: examples and counterexamples’, Syst. Control Lett., 1994, 23, (2), pp. 119125.
    9. 9)
      • 12. Jo, N., Seo, J.: ‘Input output linearization approach to state observer design for nonlinear system’, IEEE Trans. Autom. Control, 2000, 45, (12), pp. 23882393.
    10. 10)
      • 9. Ding, Z.: ‘Output regulation of uncertain nonlinear systems with nonlinear exosystems’, IEEE Trans. Autom. Control, 2006, 51, (3), pp. 498503.
    11. 11)
      • 17. Fu, J.: ‘Extended backstepping approach for a class of non-linear systems in generalised output feedback canonical form’, IET Control Theory Appl., 2009, 3, (8), pp. 10231032.
    12. 12)
      • 21. Li, C., Tong, S., Wang, W.: ‘Fuzzy adaptive high-gain-based observer backstepping control for SISO nonlinear systems’, Inf. Sci., 2011, 181, (11), pp. 24052421.
    13. 13)
      • 15. Praly, L., Jiang, Z.: ‘On global output feedback stabilization of uncertain nonlinear systems’. Proc. 42nd IEEE Conf. Decision Control, Maui, Hawaii, USA, December 2003, pp. 15441549.
    14. 14)
      • 13. Qian, C., Lin, W.: ‘Output feedback control of a class of nonlinear systems: a nonseparation principle paradigm’, IEEE Trans. Autom. Control, 2002, 47, (10), pp. 17101715.
    15. 15)
      • 18. Li, W., Wei, X., Zhang, S.: ‘Decentralised output-feedback control for high-order stochastic non-linear systems’, IET Control Theory Appl., 2012, 6, (6), pp. 838846.
    16. 16)
      • 2. Kristic, M., Kanellakopoulos, I., Kokotovic, P.: ‘Adaptive nonlinear control without overparametrization’, Syst. Control Lett., 1992, 19, (3), pp. 177185.
    17. 17)
      • 8. Marino, R., Tomei, P.: ‘Nonlinear control design: geometric, adaptive, and robust’ (Prentice-Hall, London, 1995).
    18. 18)
      • 20. Application note for an infrared, triangultation-based distance sensor with an analog, non-linear output: available at http://www.zuff.info/SharpGP2D12_E.html.
    19. 19)
      • 5. Jiang, Z., Praly, L.: ‘Design of robust adaptive controller for nonlinear systems with dynamic uncertainties’, Automatica, 1998, 34, (7), pp. 825840.
    20. 20)
      • 4. Seto, D., Annaswamy, A., Baillieul, J.: ‘Adaptive control of nonlinear systems with a triangular structure’, IEEE Trans. Autom. Control, 1994, 39, (7), pp. 14111428.
    21. 21)
      • 3. Kristic, M., Kanellakopoulos, I., Kokotovic, P.: ‘Nonlinear and adaptive control design’ (Wiley, New York, 1995).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2011.0505
Loading

Related content

content/journals/10.1049/iet-cta.2011.0505
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading