Frequency domain properties of reset systems with multiple reset anticipations

Frequency domain properties of reset systems with multiple reset anticipations

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A reset controller is a controller that operates most of the time as a linear system, except when some condition holds. The typical reset condition is the zero crossing of the tracking error signal, e(t) = 0. At this moment, the controller performs a zero resetting action on its state. It has been shown that reset control is able to overcome fundamental linear limitations. This article studies, within a frequency-domain framework, the generalisation of reset control systems based on including some anticipation on the reset condition.This has a favourable phase lead effect. The paper discusses different reset anticipations schemes, including multiple reset actions in the same period, computes Fourier harmonics and describing function of general reset controllers and shows explicitly the overcoming of frequency-domain limitations (Bode's gain–phase relation).


    1. 1)
      • 1. Clegg, J.C.: ‘A nonlinear integrator for servomechanism’, Trans. A.I.E.E.m, Part II, 1958, 77, pp. 4142.
    2. 2)
      • 2. Horowitz, I.M., Rosenbaum, P.: ‘Nonlinear design for cost of feedback reduction in systems with large parameter uncertainty’, Int. J. Control, 1975, 24, (6), pp. 9771001 (doi: 10.1080/00207177508922051).
    3. 3)
      • 3. Krishnan, K.R., Horowitz, I.M.: ‘Synthesis of a nonlinear feedback system with significant plant-ignorance for prescribed system tolerances’, Int. J. Control, 1974, 19, (4), pp. 689706 (doi: 10.1080/00207177408932666).
    4. 4)
      • 4. Beker, O., Hollot, C.V., Chait, Y.: ‘Plant with integrator: an example of reset control overcoming limitations of linear systems’, IEEE Trans. Autom. Control, 2001, 46, (11), pp. 17971799 (doi: 10.1109/9.964694).
    5. 5)
      • 5. Beker, O., Hollotb, C.V., Chait, Y., Han, H.: ‘Fundamental properties of reset control systems’, Automatica, 2004, 40, pp. 905915 (doi: 10.1016/j.automatica.2004.01.004).
    6. 6)
      • 6. Chait, Y., Hollot, C.: ‘On Horowitzs contributions to reset control’, Int. J. Robust Nonlinear Control, 2002, pp. 335355.
    7. 7)
      • 7. Zheng, Y., Chait, Y., Hollot, C.V., Steinbuch, M., Norg, M.: ‘Experimental demonstration of reset control design, control engineering practice’, Control Eng. Pract., 2000, 8, pp. 113120 (doi: 10.1016/S0967-0661(99)00131-8).
    8. 8)
      • 8. Beker, O., Hollot, C.V., Chait, Y.: ‘Plant with an integrator: anations of linear feedback’, IEEE Trans. Autom. Control, 2001.
    9. 9)
      • 9. Aangenent, W.H.T.M., Witvoet, G., Heemels, W.P.M.H., van de Molengraft, M.J.G., Steinbuch, M.: ‘Performance analysis of reset control systems’, Int. J. Robust Nonlinear Control, 2009.
    10. 10)
      • 10. Loquen, T., Tarbouriech, S., Prieur, C.: ‘Stability of reset control systems with nonzero reference’. Proc. 47th IEEE Conf. on Decision and Control, Cancun, Mexico, 9–11 December, 2008.
    11. 11)
      • 11. Nešić, D., Zaccarian, L., Teel, A.R.: ‘Stability properties of reset systems’, Automatica, 2008, 44, (8), pp. 20192026 (doi: 10.1016/j.automatica.2007.11.014).
    12. 12)
      • 12. Nešić, D., Zaccarian, L., Teel, A.R.: ‘First order reset elements and the Clegg integrator revisited’. Proc. American Control Conf., 2005, vol. 1, pp. 563568.
    13. 13)
      • 13. Guo, Y., Wang, Y., Xie, L., Zheng, J.: ‘Stability analysis and design of reset systems: theory and an application’, Automatica, 2009, 45 pp. 492497 (doi: 10.1016/j.automatica.2008.08.016).
    14. 14)
      • 14. Baños, A., Carrasco, J., Barreiro, A.: ‘Reset times-dependent stability of reset control with unstable base systems’, IEEE Trans. Autom. Control, 2011, 56, (1) (doi: 10.1109/TAC.2010.2088892).
    15. 15)
      • 15. Vidal, A., Baños, A., Moreno, J.C., Berenguel, M.: ‘PI+CI compensation with variable reset: application on solar collector field’. 34th Annual Conf. on IEEE Industrial Electronics Society, Orlando, Florida, EE.UU.2008.
    16. 16)
      • 16. Vidal, A., Baños, A.: ‘Reset compensation for temperature control: experimental applications on heat exchangers’, Chem. Eng. J., 2010, 159, (1–3), pp. 170181 (doi: 10.1016/j.cej.2010.02.033).
    17. 17)
      • 17. Fernández, A., Barreiro, A., Baños, A., Carrasco, J.: ‘Reset control for passive bilateral teleoperation’, IEEE Trans. Ind. Electron., 2011, to appear.
    18. 18)
      • 18. Baños, A., Dormido, S., Barreiros, A.: ‘Limit cycles analysis in reset control systems with reset band’, Nonlinear Anal.: Hybrid Syst., 2011, 5, (2), pp. 163173 (doi: 10.1016/j.nahs.2010.07.004).
    19. 19)
      • 19. Baños, A., Dormido, S., Barreiros, A.: ‘Reset control systems with reset band: well-posedness and limit cycles analysis’, Mediterranean Control Conf.MED’11, Greece, 2011.
    20. 20)
      • 20. Baños, A., Dormido, S., Barreiro, A.: ‘Stability Analysis of reset control systems with reset band’, Third IFAC Conf. on Analysis and Design of Hybrid Systems, 2009.
    21. 21)
      • 21. Baños, A., Barreiro, A.: ‘Delay-independent stability of reset systems’, IEEE Trans. Autom. Control, 2009, 54, (2), pp. 341346 (doi: 10.1109/TAC.2008.2007865).
    22. 22)
      • 22. Guo, Y., Wang, Y., Xie, L., Zheng, J.: ‘Frequency-domain properties of reset systems with application in hard-disk-drive systems’, IEEE Trans. Control Syst. Technol., 2009, 17, (6).
    23. 23)
      • 23. Aström, K.J., Murray, R.M.: ‘Feedback systems’ (Princeton University Press, 2008).

Related content

This is a required field
Please enter a valid email address