Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Adaptive fuzzy control for non-linear dynamical systems based on differential flatness theory

Adaptive fuzzy control for non-linear dynamical systems based on differential flatness theory

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A new approach to adaptive fuzzy control for uncertain non-linear dynamical systems, is proposed. The considered class of systems can be written in the Brunovsky (canonical) form after a transformation of their state variables and control input. The resulting control signal is shown to consist of non-linear elements, which in case of unknown system parameters can be approximated using neurofuzzy networks. An adaptation law for the neurofuzzy approximators can be computed using Lyapunov stability analysis. It is shown that the proposed adaptation law assures stability of the closed loop. Simulation experiments on benchmark non-linear dynamical systems are used to evaluate the performance of the proposed flatness-based adaptive fuzzy control scheme.

References

    1. 1)
      • B. Laroche , P. Martin , N. Petit . (2007) Commande par platitude: equations différentielles ordinaires et aux derivées partielles.
    2. 2)
    3. 3)
      • L.X. Wang . (1997) A course in fuzzy systems and control.
    4. 4)
      • M. Fliess , H. Mounier , G. Picci , D.S. Gilliam . (1999) Tracking control and π-freeness of infinite dimensional linear systems, ‘Dynamical systems, control, coding and computer vision’.
    5. 5)
      • Y.W. Cho , C.W. Park , J.H. Kim , M. Park . Indirect model reference adaptive fuzzy control of dynamic fuzzy-state space model. IET Proc. Control Theory Appl. , 273 - 282
    6. 6)
    7. 7)
    8. 8)
    9. 9)
      • Ph. Martin , P. Rouchon . (1999) Systèmes plats: planification et suivi des trajectoires, Journées X-UPS, École des Mines de Paris.
    10. 10)
      • G. Rigatos , A. Al-Khazraji , G. Rigatos . (2012) Flatness-based adaptive fuzzy control for MIMO nonlinear dynamical systems, ‘Nonlinear estimation and applications to industrial systems control’.
    11. 11)
    12. 12)
      • G.G. Rigatos . (2011) Modelling and control for intelligent industrial systems: adaptive algorithms in robots and industrial engineering.
    13. 13)
    14. 14)
      • Rigatos, G.G.: `Adaptive fuzzy control of MIMO dynamical systems using differential flatness theory', IEEE 21st Int. Symp. Industrial Electronics, ISIE 2012, May 2012, Hangzhou, China.
    15. 15)
      • L.X. Wang . (1994) Adaptive fuzzy systems and control: design and stability analysis.
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
    24. 24)
    25. 25)
      • H. Sira-Ramírez , S. Agrawal . (2004) Differentially flat systems.
    26. 26)
    27. 27)
      • J. Rudolph . (2003) Flatness based control of distributed parameter systems, steuerungs- und regelungstechnik.
    28. 28)
    29. 29)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2011.0464
Loading

Related content

content/journals/10.1049/iet-cta.2011.0464
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address