Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Planar path following control for stratospheric airship

A novel planar path following control method for an underactuated stratospheric airship is presented in this study. Firstly, the Guidance-Based Path Following (GBPF) principle and the Trajectory Linearisation Control (TLC) theory are described. Then, dynamic model of the stratospheric airship is introduced with kinematics and dynamics equations. Based on this model, a path following control strategy integrated GBPF principle and TLC theory is deduced. The designed control system possesses a cascaded structure which consists of guidance law subsystem, attitude control loop and velocity control loop. Stability analysis shows that the controlled closed-loop system is asymptotically stable. Finally, simulations for the stratospheric airship and flight experimental results for a low-altitude airship to follow typical paths are illustrated to verify effectiveness of the proposed approach.

References

    1. 1)
      • 7. Khoury, G.H., Gillett, J.D.: ‘Airship technology’ (Cambridge Univ. Press, 1999, 1st edn.).
    2. 2)
      • 33. Mueller, J.B., Paluszek, M.A.: ‘Development of an aerodynamic model and control law design for a high altitude airship’. AIAA Third Unmanned Unlimited Technical Conf., Chicago, USA, September 2004, pp. 117.
    3. 3)
      • 42. Liu, Y., Zhu, J.J.: ‘Singlular perturbation analysis for trajectory linearization control’. Proc. American Control Conf., New York, USA, July 2007, pp. 30473052.
    4. 4)
      • 10. Acosta, D.M., Joshi, S.S.: ‘Adaptive nonlinear dynamic inversion control of an autonomous airship for the exploration of Titan’. Proc. AIAA Guidance, Navigation and Control Conf., South Carolina, USA, August 2007, pp. 113.
    5. 5)
      • 38. Hovakimyan, N., Lavretsky, E., Cao, C.Y.: ‘Adaptive dynamic inversion via time-scale separation’, IEEE Trans. Neural Netw., 2008, 19, (10), pp. 17021711.
    6. 6)
      • 27. Breivik, M., Fossen, T.I.: ‘Guidance-based path following for autonomous underwater vehicles’. Proc. MTS/IEEE Oceans Conf., Washington D.C., USA, September 2005, pp. 28072814.
    7. 7)
      • 30. Zhu, J.J., Lawrence, D.A., Fisher, J.: ‘Direct fault tolerant RLV attitude control – a singular perturbation approach’. Proc. AIAA Guidance, Navigation and Control Conf., Monterey, USA, August 2002, pp. 111.
    8. 8)
      • 20. Samson, C.: ‘Control of chained systems: application to path following and time-varying point-stabilization of mobile robots’, IEEE Trans. Autom. Control, 1995, 40, (1), pp. 6471.
    9. 9)
      • 43. www.lonsan.com.cn/Products1.asp?oneclass=5&pid=13.
    10. 10)
      • 8. Hygounenc, E., Soueres, P.: ‘Automatic airship control involving backstepping techniques’. IEEE Int. Conf. Systems, Man and Cybernetics, Toulouse, France, October 2002, pp. 16.
    11. 11)
      • 39. Naidu, D.S., Calise, A.J.: ‘Singular perturbations and time scales in guidance and control of aerospace systems: a survey’, J. Guid. Control Dyn., 2001, 24, (6), pp. 10571078.
    12. 12)
      • 6. Schmidt, D.K.: ‘Modeling and near-space stationkeeping control of a large high-altitude airship’, J. Guid. Control Dyn., 2007, 30, (2), pp. 540547.
    13. 13)
      • 18. Zhu, J.J.: ‘A unified spectral theory for linear time-varying systems-progress and challenges’. Proc. 34th IEEE Conf. Decision & Control, New Orleans, USA, December 1995, pp. 25402546.
    14. 14)
      • 4. Yoshikazu, I., Katsuya, S., Kouichi, S.: ‘Flight control testing for the development of stratospheric platform airships’. AIAA's Third Annual Aviation Technology, Integration, and Operations Tech., Denver, USA, November 2003, pp. 111.
    15. 15)
      • 9. Moutinho, A., Azinheira, J.R.: ‘Stability and robustness analysis of the AURORA airship control system using dynamic inversion’. Proc. IEEE Int. Conf. Robotics and Automation, Barcelona, Spain, April 2004, pp. 22652270.
    16. 16)
      • 24. Rysdyk, R.: ‘UAV path following for constant line-of-sight’. Proc. Second AIAA Unmanned Unlimited Systems, Technologies, and Operations – Aerospace, San Diego, USA, September 2003, pp. 110.
    17. 17)
      • 14. Azinheira, J.R., Paiva, E.C., Ramos, J.G., Bueno, S.S.: ‘Mission path following for an autonomous unmanned airship’. Proc. 2000 IEEE Int. Conf. Robotics and Automation, San Francisco, USA, April 2000, pp. 12691275.
    18. 18)
      • 29. Liu, Y., Zhu, J.J., Williams, R.L., Wu, J.H.: ‘Omni-directional mobile robot controller based on trajectory linearization’, Robot. Auton. Syst., 2008, 56, pp. 461479.
    19. 19)
      • 22. Skjetne, R., Fossen, T.I.: ‘Nolinear maneuvering and control of ships’. Proc. MTS/IEEE Oceans Conf., Honolulu, USA, August 2001, pp. 18081815.
    20. 20)
      • 2. Jamison, L., Sommer, G.S., Porche, L.R.: ‘High-altitude airships for the future force army’. Technical Report of RAND Corporation, 2005.
    21. 21)
      • 37. Schumacher, C., Khargonekar, P.P.: ‘Stability analysis of a missile control system with dynamic inversion controller’, J. Guid. Control Dyn., 1998, 21, (3), pp. 508515.
    22. 22)
      • 1. Roney, J.A.: ‘Statistical wind analysis for near-space applications’, J. Atmos. Sol-Terr. Phys., 2007, 69, pp. 14851501.
    23. 23)
      • 15. Miller, C.J., Sullivan, J., McDonald, S.: ‘High altitude airship simulation control and low altitude flight demonstration’. AIAA Infotech@Aerospace Conf. and Exhibit2007; California, USA, May 2007, pp. 122.
    24. 24)
      • 40. Khalil, H.K.: ‘Nonlinear systems’ (Pearson Education, 2002, 3rd edn.).
    25. 25)
      • 19. Zhu, J.J.: ‘PD-spectral theory for multivariable linear time-varying systems’. Proc. 36th IEEE Conf. Decision & Control, San Diego, USA, December 1997, pp. 39083913.
    26. 26)
      • 13. Xie, S.R., Luo, J., Rao, J.J., Gong, Z.B.: ‘Computer vision-based navigation and predefined track following control of a small robotic airship’, Acta Autom. Sin., 2007, 33, (3), pp. 286291.
    27. 27)
      • 12. Azinheira, J.R., Moutinho, A.: ‘Hover control of an UAV with backsteppling design including input saturations’, IEEE Trans. Control Syst. Technol., 2008, 16, (3), pp. 517526.
    28. 28)
      • 21. Altafini, C.: ‘Following a path of varying curvature as an output regulation problem’, IEEE Trans. Autom. Control, 2002, 47, (9), pp. 15511555.
    29. 29)
      • 16. Breivik, M., Fossen, T.I.: ‘Principles of guidance-based path following in 2D and 3D’. Proc. 44th IEEE Conf. Decision & Control, and the European Control Conf. 2005, Seville, Spain, December 2005, pp. 627634.
    30. 30)
      • 32. Huang, R., Liu, Y., Zhu, J.J.: ‘Guidance, navigation and control system design for tripropeller vertical-takeoff-and-landing unmanned air vehicle’, J. Aircraft, 2009, 46, (6), pp. 18371856.
    31. 31)
      • 23. Encarnacao, P., Pascoal, A.: ‘3D path following for autonomous underwater vehicle’. Proc. 39th IEEE Conf. Decision & Control, Sydney, Australia, December 2000, pp. 29772982.
    32. 32)
      • 31. Zhu, B., Huo, W.: ‘Trajectory linearization control for a quadrotor helicopter’. Proc. Eighth IEEE Int. Conf. Control and Automation, Xiamen, China, June 2010, pp. 3439.
    33. 33)
      • 34. Frye, M.T., Gammon, S.M., Qian, C.J.: ‘The 6-DOF dynamic model and simulation of the Tri-Turbofan remote controlled airship’. Proc. American Control Conf., New York, USA, July 2007, pp. 816821.
    34. 34)
      • 25. Pettersen, K.Y., Lefeber, E.: ‘Way-point tracking control of ships’. Proc. 40th IEEE Conf. Decision & Control, Orlando, USA, December 2001, pp. 940945.
    35. 35)
      • 35. Lee, S.J., Bang, H.C.: ‘Three-dimensional ascent trajectory optimization for stratospheric airship platforms in the jet stream’, J. Guid. Control Dyn., 2007, 30, (5), pp. 13411352.
    36. 36)
      • 41. Liu, Y., Zhu, J.J.: ‘Regular perturbation analysis for trajectory linearization control’. Proc. American Control Conf., New York, USA, July 2007, pp. 30533058.
    37. 37)
      • 3. Michael, S.S., Edward, L.R.: ‘Applications of scientific ballooning technology to high altitude airships’. AIAA's Third Annual Aviation Technology, Integration, and Operations Tech., Denver, USA, November 2003, pp. 18.
    38. 38)
      • 36. Mueller, J.B., Zhao, Y.J., Garrard, W.L.: ‘Optimal ascent trajectories for stratospheric airships using wind energy’, J. Guid. Control Dyn., 2009, 32, (4), pp. 12321245.
    39. 39)
      • 28. Mickle, M.C., Huang, R., Zhu, J.J.: ‘Unstable, nonminimum phase, nonlinear tracking by trajectory linearization control’. Proc. 2004 IEEE Int. Conf. Control Applications, Taipei, Taiwan, September 2004, pp. 812818.
    40. 40)
      • 17. Breivik, M., Fossen, T.I.: ‘Path following for marine surface vessels’. Proc. MTS/IEEE Oceans Conf., Kobe, Japan, November 2004, pp. 22822289.
    41. 41)
      • 5. Lee, Y.G., Kim, D.M., Yeom, C.H.: ‘Development of Korean high altitude platform systems’, Int. J. Wirel. Inf. Netw., 2006, 13, pp. 3142.
    42. 42)
      • 11. Lee, S.J., Lee, H.C., Won, D.Y., Bang, H.: ‘Backstepping approach of trajectory tracking control for the mid-altitude unmanned airship’. Proc. AIAA Guidance, Navigation and Control Conf., South Carolina, USA, August 2007, pp. 114.
    43. 43)
      • 26. Lapierre, L., Soetato, D., Pascoal, A.: ‘Nonlinear path following with applications to the control of autonomous underwater vehicles’. Proc. 42th IEEE Conf. Decision & Control, Maui, USA, December 2003, pp. 12561261.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2011.0462
Loading

Related content

content/journals/10.1049/iet-cta.2011.0462
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address