http://iet.metastore.ingenta.com
1887

Delay and data packet dropout separately related stability and state feedback stabilisation of networked control systems

Delay and data packet dropout separately related stability and state feedback stabilisation of networked control systems

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

There exist bounded transmission delay and data packet dropout in the networked control systems (NCSs). When the sensors and actuators are time-driven and controllers are event-driven, the NCSs can be modelled as a class of discrete-time systems with time-varying input delay. Most of similar articles simply combine delay and packet dropout to analyse and synthesise NCSs without distinguishing their different impacts, which leads to conservative results. In this study, the authors summarise that the number of consecutive data packet dropout increases gradually in case of packet dropout. A novel Lyapunov–Krasovskii functional is constructed based on this increment property, so less conservative results are obtained through the Lyapunov–Krasovskii functional approach. In addition, the upper bound of a Lyapunov functional difference cross term is reasonably estimated to further reduce the conservativeness. Stability and stabilisation criteria which are separately related to the transmission delay and data packet dropout are presented. The obtained conditions are based on linear matrix inequalities, which can be solved easily by MATLAB or other numerical software.

References

    1. 1)
      • 1. Peng, C., Tian, Y.C., Tade, M.O.: ‘State feedback controller design of networked control systems with interval time-varying delay and nonlinearity’, Int. J. Robust Nonlinear Control, 2008, 18, (12), pp. 12851301 (doi: 10.1002/rnc.1278).
    2. 2)
      • 2. Zhang, W., Branicky, M.S., Phillips, S.M.: ‘Stability of networked control systems’, IEEE Control Syst. Mag., 2001, 21, (1), pp. 8499 (doi: 10.1109/37.898794).
    3. 3)
      • 3. Li, H., Chow, M.Y., Sun, Z.: ‘State feedback stabilisation of networked control systems’, IET Control Theory Appl., 2009, 3, (7), pp. 929940 (doi: 10.1049/iet-cta.2008.0260).
    4. 4)
      • 4. Cloosterman, M., Wouw, N., Heemels, W., Nijmeijer, H.: ‘Stability of networked control systems with uncertain time-varying delays’, IEEE Trans. Autom. Control, 2009, 54, (7), pp. 15751580 (doi: 10.1109/TAC.2009.2015543).
    5. 5)
      • 5. Nilsson, J., Bernhardsson, B., Wittenmark, B.: ‘Stochastic analysis and control of real-time systems with random time delays’, Automatica, 1998, 34, (5), pp. 5764 (doi: 10.1016/S0005-1098(97)00170-2).
    6. 6)
      • 6. Hu, S.S., Zhu, Q.X.: ‘Stochastic optimal control and analysis of stability of networked control systems with long delay’, Automatica, 2003, 39, (11), pp. 18771884 (doi: 10.1016/S0005-1098(03)00196-1).
    7. 7)
      • 7. Yu, M., Wang, L., Chu, T., Xie, G.: ‘Modelling and control of networked systems via jump system approach’, IET Control Theory Appl., 2008, 2, (6), pp. 535541 (doi: 10.1049/iet-cta:20060475).
    8. 8)
      • 8. Zhang, W.A., Yu, L.: ‘New approach to stabilisation of networked control systems with time-varying delays’, IET Control Theory Appl., 2008, 2, (12), pp. 10941104 (doi: 10.1049/iet-cta:20070291).
    9. 9)
      • 9. Liu, G.P., Xia, Y.Q., Chen, J., Rees, D., Hu, W.S.: ‘Networked predictive control of systems with random network delays in both forward and feedback channels’, IEEE Trans. Ind. Electron. II, 2007, 54, (3), pp. 12821297 (doi: 10.1109/TIE.2007.893073).
    10. 10)
      • 10. Guo, Y.F., Li, S.Y.: ‘A new networked predictive control approach for systems with random network delay in the forward channels’, Int. J. Syst. Sci., 2010, 41, (5), pp. 511520 (doi: 10.1080/00207720903072308).
    11. 11)
      • 11. Liu, G.P.: ‘Predictive controller design of networked systems with communication delays and data losses’, IEEE Trans. Circuits Syst., 2010, 57, (6), pp. 481485 (doi: 10.1109/TCSII.2010.2048377).
    12. 12)
      • 12. Yang, R.N., Gao, H.J., Shi, P.: ‘Delay-dependent robust H control for uncertain stochastic time-delay systems’, Int. J. Robust Nonlinear Control, 2010, 20, (16), pp. 18521865.
    13. 13)
      • 13. Xu, S.Y., Lam, J., Zhang, L.Q.: ‘Robust D-stability analysis for uncertain discrete singular systems with state delay’, IEEE Trans. Circuits Syst. I, 2002, 49, (4), pp. 551555 (doi: 10.1109/81.995677).
    14. 14)
      • 14. He, Y., Wu, M., Liu, G.P., She, J.H.: ‘Output feedback stabilization for a discrete-time system with a time-varying delay’, IEEE Trans. Autom. Control, 2008, 53, (10), pp. 23722377 (doi: 10.1109/TAC.2008.2007522).
    15. 15)
      • 15. Meng, X.Y., Lam, J., Du, B.Z., Gao, H.J.: ‘A delay-partitioning approach to the stability analysis of discrete-time systems’, Automatica, 2010, 46, (3), pp. 610614 (doi: 10.1016/j.automatica.2009.12.004).
    16. 16)
      • 16. Sun, J., Liu, G.P., Chen, J., Rees, D.: ‘Improved stability criteria for linear systems with time-varying delay’, IET Control Theory Appl., 2010, 4, (4), pp. 683689 (doi: 10.1049/iet-cta.2008.0508).
    17. 17)
      • 17. Sun, M., Jia, Y.: ‘Delay-dependent robust H control of time-delay systems’, IET Control Theory Appl., 2010, 4, (7), pp. 11221130 (doi: 10.1049/iet-cta.2008.0415).
    18. 18)
      • 18. Huang, H., Feng, G.: ‘Improved approach to delay-dependent stability analysis of discrete-time systems with time-varying delay’, IET Control Theory Appl., 2010, 4, (10), pp. 21522159 (doi: 10.1049/iet-cta.2009.0225).
    19. 19)
      • 19. Zhang, J., Xia, Y., Shi, P., Mahmoud, M.S.: ‘New results on stability and stabilisation of systems with interval time-varying delay’, IET Control Theory Appl., 2011, 5, (3), pp. 429436 (doi: 10.1049/iet-cta.2009.0560).
    20. 20)
      • 20. Yue, D., Han, Q.L., Peng, C.: ‘State feedback controller design of networked control systems’, IEEE Trans. Circuits Syst., 2004, 51, (11), pp. 640644 (doi: 10.1109/TCSII.2004.836043).
    21. 21)
      • 21. Xiong, J.L., Lam, J.: ‘Stabilization of networked control systems with a logic ZOH’, IEEE Trans. Autom. Control, 2009, 54, (2), pp. 358363 (doi: 10.1109/TAC.2008.2008319).
    22. 22)
      • 22. Yue, D., Han, Q.L., Lam, J.: ‘Network-based robust H control of systems with uncertainty’, Automatica, 2005, 41, (2), pp. 307312 (doi: 10.1016/j.automatica.2004.09.006).
    23. 23)
      • 23. He, Y., Wu, M., Liu, G.P., She, J.H.: ‘Output feedback stabilization for a discrete-time system with a time-varying delay’, IEEE Trans. Autom. Control, 2008, 53, (10), pp. 23722377 (doi: 10.1109/TAC.2008.2007522).
    24. 24)
      • 24. Guo, Y.F., Li, S.Y.: ‘H-infinity state feedback controller design for networked control systems’, Control Theory Appl., 2008, 25, (3), pp. 825835.
    25. 25)
      • 25. Yang, T.C., Peng, C., Yue, D., Fei, M.R.: ‘New study of controller design for networked control systems’, IET Control Theory Appl., 2010, 4, (7), pp. 11091121 (doi: 10.1049/iet-cta.2008.0571).
    26. 26)
      • 26. Hao, F., Zhao, X.: ‘Linear matrix inequality approach to static output-feedback stabilisation of discrete-time networked control systems’, IET Control Theory Appl., 2010, 4, (7), pp. 12111221 (doi: 10.1049/iet-cta.2009.0164).
    27. 27)
      • 27. Gao, H.J., Chen, T.W., Lam, J.: ‘A new delay system approach to network-based control’, Automatica, 2008, 44, (1), pp. 3952 (doi: 10.1016/j.automatica.2007.04.020).
    28. 28)
      • 28. Kim, D.S., Lee, Y.S., Kwon, W.H., Park, H.S.: ‘Maximum allowable delay bounds of networked control systems’, Control Eng. Pract., 2003, 11, (11), pp. 13011313 (doi: 10.1016/S0967-0661(02)00238-1).
    29. 29)
      • 29. Naghshtabrizi, P., Hespanha, P.H., Teel, A.R.: ‘Exponential stability of impulsive systems with application to uncertain sampled-data systems’, Syst. Control Lett., 2008, 57, (5), pp. 378385 (doi: 10.1016/j.sysconle.2007.10.009).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2011.0391
Loading

Related content

content/journals/10.1049/iet-cta.2011.0391
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address