© The Institution of Engineering and Technology
This study investigates the stabilisation problem of discretetime switched positive linear systems by means of piecewise linear copositive Lyapunov functions. Two stabilisation strategies are designed under time and statedependent switching cases, respectively. The former case aims at determining an upper bound of the minimum dwell time to guarantee that the underlying system is stable for any switching signal with dwell time greater than this bound. The latter case is focused on deriving a statedependent switching law stabilising the underlying system from the solution of a family of socalled linear copositive Lyapunov–Metzler inequalities. In each case, a sufficient stabilisation condition is given first, then based on which an associated guaranteed cost is further proposed. A practical system derived from the distributed power control in communication networks is given to illustrate the effectiveness and applicability of the theoretical results.
References


1)

A. Berman ,
R.J. Plemmons
.
(1994)
Nonnegative matrices in the mathematical sciences.

2)

L. Farina ,
S. Rinaldi
.
(2000)
Positive linear systems: theory and applications.

3)

T. Kaczorek
.
(2002)
Positive 1D and 2D systems.

4)

G. James ,
V. Rumchev
.
Stability of positive linear discretetime systems.
Bull. Pol. Acad. Sci. Tech. Sci.
,
1 ,
1 
8

5)

M. Twardy
.
On the alternative stability criterion for positive systems.
Bull. Pol. Acad. Sci. Tech. Sci.
,
4 ,
379 
383

6)

W. Mitkowski
.
Dynamical properties of Metzler systems.
Bull. Pol. Acad. Sci. Tech. Sci.
,
4 ,
309 
312

7)

M.A. Rami ,
F. Tadeo
.
Controller synthesis for positive linear systems with bounded controls.
IEEE Trans. Circuits Syst. II
,
2 ,
151 
155

8)

M.A. Rami
.
Solvability of static outputfeedback stabilization for LTI positive systems.
Syst. Control Lett.
,
704 
708

9)

X. Liu ,
L. Wang ,
W. Yu ,
S. Zhong
.
Constrained control of positive discretetime systems with delays.
IEEE Trans. Circuits Syst. II
,
2 ,
193 
197

10)

X. Liu ,
W. Yu ,
L. Wang
.
Stability analysis of positive systems with bounded timevarying delays.
IEEE Trans. Autom. Control
,
7 ,
600 
604

11)

X. Liu ,
W. Yu ,
L. Wang
.
Necessary and sufficient asymptotic stability criterion for 2D positive systems with timevarying state delays described by Roesser model.
IET Control Theory Appl.
,
5 ,
663 
668

12)

S. Bundfuss ,
M. Dür
.
Copositive Lyapunov functions for switched systems over cones.
Syst. Control Lett.
,
5 ,
342 
345

13)

E. Fornasini ,
M.E. Valcher
.
Linear copositive Lyapunov functions for continuoustime positive switched systems.
IEEE Trans. Autom. Control
,
8 ,
1933 
1937

14)

F. Knorn ,
O. Mason ,
R.N. Shorten
.
On linear copositive Lyapunov functions for sets of linear positive systems.
Automatica
,
8 ,
1943 
1947

15)

O. Mason ,
V.S. Bokharaie ,
R. Shorten
.
(2009)
Stability and Dstability for switched positive systems, Positive systems.

16)

D. Liberzon
.
(2003)
Switching in systems and control.

17)

J.P. Hespanha ,
A.S. Morse
.
Switching between stabilizing Controllers.
Automatica
,
11 ,
1905 
1917

18)

R.A. Decarlo ,
M.S. Branicky ,
S. Pettersson ,
B. Lennartson
.
Perspective and results on the stability and stabilizability of hybrid systems.
Proc. IEEE
,
1069 
1081

19)

D. Liberzon ,
A.S. Morse
.
Basic problems in stability and design of switched systems.
IEEE Control Syst. Mag.
,
5 ,
59 
70

20)

H. Lin ,
P.J. Anstaklis
.
Stability and stabilisability of switched linear systems: a survey of recent results.
IEEE Trans. Autom. Control
,
308 
322

21)

M.S. Branicky
.
Multiple Lyapunov functions and other analysis tools for switched and hybrid systems.
IEEE Trans. Autom. Control
,
4 ,
475 
482

22)

R. Shorten ,
F. Wirth ,
O. Mason ,
K. Wulff ,
C. King
.
Stability criteria for switched and hybrid systems.
Siam Rev.
,
4 ,
545 
592

23)

J. Daafouz ,
P. Riedinger ,
C. Iun
.
Stability analysis and control synthesis for switched systems: a switched lyapunov function approach.
IEEE Trans. Autom. Control
,
11 ,
1883 
1887

24)

J. Daafouz ,
J. Bernussou
.
Parameter dependent Lyapunov functions for discretetime systems with time varying parameter uncertainties.
Syst. Control Lett.
,
5 ,
355 
359

25)

R. Shorten ,
F. Wirth ,
D. Leith
.
A positive systems model of TCPlike congestion control: asymptotic results.
IEEE Trans. Autom. Control
,
3 ,
616 
629

26)

A. Jadbabaie ,
J. Lin ,
A.S. Morse
.
Coordination of groups of mobile autonomous agents using nearest neighbor rules.
IEEE Trans. Autom. Control
,
6 ,
988 
1001

27)

E.H. Vargas ,
P. Colaneri ,
R. Middleton ,
F. Blanchini
.
Discretetime control for switched positive systems with application to mitigating viral escape.
Int. J. Robust Nonlinear Control
,
10 ,
1093 
1111

28)

X. Liu
.
Stability analysis of switched positive systems: a switched linear copositive Lyapunov function method.
IEEE Trans. Circuits Syst. II, Express Briefs
,
5 ,
414 
418

29)

X. Liu ,
C. Dang
.
Stability analysis of positive switched linear systems with delays.
IEEE Trans. Autom. Control
,
7 ,
1684 
1690

30)

O. Mason ,
R. Shorten
.
On linear copositive Lyapunov functions and the stability of switched positive linear systems.
IEEE Trans. Autom. Control
,
7 ,
1346 
1349

31)

L. Gurvits ,
R. Shorten ,
O. Mason
.
On the stability of switched positive linear systems.
IEEE Trans. Autom. Control
,
6 ,
1099 
1103

32)

L. Fainshil ,
M. Margaliot ,
P. Chigansky
.
On the stability of positive linear switched systems under arbitrary switching laws.
IEEE Trans. Autom. Control
,
4 ,
897 
899

33)

J.C. Geromel ,
P. Colaner
.
Stability and stabilization of continuoustime switched linear systems.
SIAM J. Control Optim.
,
5 ,
1915 
1930

34)

J.C. Geromel ,
P. Colaner
.
Stability and stabilization of discretetime switched systems.
Int. J. Control
,
7 ,
719 
728

35)

Zappavigna, A., Colaneri, P., Geromel, J., Shorten, R.: `Dwell time analysis for continuoustime switched linear positive systems', Proc. the America Control Conference, 2010, Baltimore, America, p. 6256–6261.

36)

Zappavigna, A., Colaneri, P., Geromel, J., Middleton, R.: `Stabilization of continuoustime switched linear positive systems', Proc. America Control Conference, 2010, Baltimore, America, p. 3275–3280.

37)

G.J. Foschini ,
Z. Miljanic
.
A simple distributed autonomous power control algorithm and its convergence.
IEEE Trans. Veh. Technol.
,
4 ,
641 
646

38)

Paul, A., Akar, M., Mitra, U., Safonov, M.G.: `A switched system model for stability analysis of distributed power control algorithms for cellular communications', Proc. 2004 American Control Conference, 2004, Boston, Massachusetts.

39)

D.U. CamposDelgado ,
J.M. LunaRivera ,
F.J. MartnezLopez
.
Distributed power control algorithms in the uplink of wireless codedivision multipleaccess systems.
IET Proc. Control Theory
,
5 ,
795 
805
http://iet.metastore.ingenta.com/content/journals/10.1049/ietcta.2011.0293
Related content
content/journals/10.1049/ietcta.2011.0293
pub_keyword,iet_inspecKeyword,pub_concept
6
6