© The Institution of Engineering and Technology
This brief concerns the stabilisation problem for a class of slowly switched positive linear systems in discretetime context. The average dwelltime switching associated with the corresponding statefeedback controllers is designed to stabilise the closedloop systems and keep the states nonnegative. The developed conditions are formulated as linear matrix inequalities, which can be directly used for controller synthesis and switching designing. Finally, a numerical example is presented to show the feasibility of the obtained theoretical results.
References


1)

D. Wang ,
P. Shi ,
W. Wang
.
Robust fault detection for continuetime switched delay systems: an linear matrix approach.
IET Control Theory Appl.
,
1 ,
100 
108

2)

Z. Ji ,
L. Wang ,
G. Xie ,
F. Hao
.
Linear matrix inequalities approach to quadratic stabilisation of switched systems.
IEE Proc. Control Theory Appl.
,
3 ,
289 
294

3)

X. Zhao ,
Q. Zeng
.
Stabilization of jump linear systems with modedependent timevarying delays.
Optim. Control Appl. Methods
,
139 
152

4)

D. Xie ,
L. Wang ,
F. Hao ,
G. Xie
.
LMI approach to L2 gain analysis and control synthesis of uncertain switched systems.
IEE Proc. Control Theory Appl.
,
1 ,
21 
28

5)

H. Torikai ,
T. Saito
.
Synchronization of chaos and its itinerancy from a network by occasional linear connection.
IEEE Trans. Circuits Syst. I
,
464 
472

6)

Y. MA ,
H. Kawakami ,
C.K. Tse
.
Bifurcation analysis of switched dynamical systems with periodically moving borders.
IEEE Trans. Circuits Syst. I
,
6 ,
1184 
1193

7)

H. Alonso ,
P. Rocha
.
A general stability test for switched positive systems based on a multidimensional system analysis.
IEEE Trans. Autom. Control
,
11 ,
2660 
2664

8)

X. Liu
.
Stability analysis of switched positive systems: a switched linear copositive Lyapunov function method.
IEEE Trans. Circuits Syst. II, Express Briefs
,
5 ,
414 
418

9)

L. Gurvits ,
R. Shorten ,
O. Mason
.
On the stability of switched positive linear systems.
IEEE Trans. Autom. Control
,
6 ,
1099 
1103

10)

O. Mason ,
R. Shorten
.
On linear copositive Lyapunov functions and the stability of switched positive linear systems.
IEEE Trans. Autom. Control
,
7 ,
1346 
1349

11)

O. Mason ,
R. Shorten
.
(2003)
A conjecture on the existence of common quadratic Lyapunov functions for positive linear systems, Proc. American Control Conf..

12)

E.H. Vargas ,
P. Colaneri ,
R. Middleton ,
F. Blanchini
.
Discretetime control for switched positive systems with application to mitigating viral escape.
Int. J. Robust Nonlinear Control
,
10 ,
1093 
1111

13)

Zappavigna, A., Colaneri, P., Geromel, J.C., Middleton, R.: `Stabilization of continuoustime switched linear positive systems', Proc. 2010 American Control Conf., 2010, Baltimore, MD, USA, p. 3275–3280.

14)

E. Fornasini ,
M.E. Valcher
.
Linear copositive Lyapunov functions for continuoustime positive switched systems.
IEEE Trans. Autom. Control
,
8 ,
1933 
1937

15)

J. Daafouz ,
G. Millerioux ,
C. Iung
.
A polyquadratic stability based approach for linear switched systems.
Int. J. Control
,
1302 
1310

16)

X. Zhao ,
Q. Zeng
.
Delaydependent H∞ performance analysis and filtering for markovian jump systems with interval timevaryingdelays.
Int. J. Adapt. Control Signal Process.
,
8 ,
633 
642

17)

J. Zhao ,
D.J. Hill
.
On stability, L2 gain and H∞ control for switched systems.
Automatica
,
5 ,
1220 
1232

18)

L. Zhang ,
P. Shi ,
E.K. Boukas ,
C. Wang
.
Robust l2l∞ filtering for switched linear discrete timedelay systems with polytopic uncertainties.
IET Control Theory Appl.
,
3 ,
722 
730

19)

X. Zhao ,
L. Zhang ,
P. Shi ,
M. Liu
.
Stability and stabilization of switched linear systems with modedependent average dwell time.
IEEE Trans. Autom. Control

20)

F. Blanchini ,
D. Casagrande ,
S. Miani
.
Modal and transition dwell time computation in switching systems: a settheoretic approach.
Automatica
,
9 ,
1477 
1482

21)

P. Colaneri ,
P. Bolzern ,
J.C. Geromel
.
Root mean square gain of discretetime switched linear systems under dwell time constraints.
Automatica
,
8 ,
1677 
1684

22)

P. Colaneri ,
J.C. Geromel ,
A. Astolfi
.
Stabilization of continuoustime switched nonlinear systems.
Syst. Control Lett.
,
1 ,
95 
103

23)

J.C. Geromel ,
P. Colaneri
.
H∞ and dwell time specifications of continuoustime switched linear systems.
IEEE Trans. Autom. Control
,
1 ,
207 
212

24)

J.C. Geromel ,
P. Colaner
.
Stability and stabilization of discretetime switched systems.
Int. J. Control
,
7 ,
719 
728

25)

L. Zhang ,
N. Cui ,
M. Liu ,
Y. Zhao
.
Asynchronous filtering of discretetime switched linear systems with average dwell time.
IEEE Trans. Circuits Syst. Regul. Pap.
,
5 ,
1109 
1118

26)

L. Zhang ,
H. Gao
.
Asynchronously switched control of switched linear systems with average dwell time.
Automatica
,
5 ,
953 
958

27)

X. Sun ,
J. Zhao ,
W. Wang
.
State feedback control for discrete delay systems with controller failures based on average dwelltime method.
IET Control Theory Appl.
,
2 ,
126 
132

28)

D. Liberzon
.
(2003)
Switching in systems and control.

29)

L. Farina ,
S. Rinaldi
.
(2000)
Positive linear systems.

30)

Hespanha, J.P., Morse, A.S.: `Stability of switched systems with average dwell time', Proc. 38th IEEE Conf. Decision and Control, 1999, Phoenix, AZ, p. 2655–2660.
http://iet.metastore.ingenta.com/content/journals/10.1049/ietcta.2011.0235
Related content
content/journals/10.1049/ietcta.2011.0235
pub_keyword,iet_inspecKeyword,pub_concept
6
6