Bounded-error uncertainty domain description for continuous-time state-space model

Access Full Text

Bounded-error uncertainty domain description for continuous-time state-space model

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A method is introduced to determine the uncertainty domains of the estimated parameters for multi-input multi-output linear time-invariant continuous-time systems. This method uses a continuous-time subspace-based algorithm in order to identify the parameters of the system. This identification method is specific because the estimated state-space realisation is described with the help of a state-space canonical form. Then, a bounded-error approach is considered in order to characterise the uncertainty domains of the coefficients of the state-space matrices. A simulation example is included to demonstrate the efficiency of the developed method.

Inspec keywords: linear systems; matrix algebra; uncertain systems; state-space methods; parameter estimation; MIMO systems; continuous time systems

Other keywords: bounded error uncertainty domain description; continuous time state-space model; state space canonical form; state-space matrices; multiinput multioutput linear time-invariant continuous time systems; parameter estimation; continuous time subspace-based algorithm

Subjects: Multivariable control systems; Control system analysis and synthesis methods; Algebra; Simulation, modelling and identification

References

    1. 1)
    2. 2)
      • Bako, L., Mercère, G., Lecoeuche, S.: `Identification of multivariable canonical state-space representations', Proc. IFAC Symp. on System Identification, July 2009, Saint Malo, France.
    3. 3)
      • M. Matsubara , Y. Usui , S. Sugimoto . Identification of continuous-time MIMO systems via sampled data. Int. J. Innov. Comput. Inf. Control , 1119 - 1136
    4. 4)
      • Tohme, E.: `Initialization of output error identification algorithms', 2008, PhD, Poitiers University, Poitiers, France.
    5. 5)
    6. 6)
      • H. Garnier , L. Wang . (2008) Identification of continuous-time models from sampled data.
    7. 7)
      • Ljung, L.: `Comments on model validation as set membership identification', Proc. Workshop on Robustness in Identification and Control, July 1999, Siena, Italy.
    8. 8)
    9. 9)
    10. 10)
      • Viberg, M., Ottersten, B., Wahlberg, B., Ljung, L.: `A statistical perspective on state space modeling using subspace method', Proc. IEEE Conf. on Decision and Control, December 1991, Brighton, United Kingdom.
    11. 11)
      • E. Walter , J. Norton , H. Piet-Lahanier , M. Milanese . (1996) Bounding approaches to system identification.
    12. 12)
    13. 13)
    14. 14)
      • C. Baron , T. Poinot , J. Trigeassou . Determination of parametric uncertainty domains using least-squares technique and bounded errors. Meth. Models Autom. Control , 1003 - 1008
    15. 15)
    16. 16)
    17. 17)
    18. 18)
      • Farah, W., Mercère, G., Poinot, T.: `System identification and uncertainty domain determination: a subspace-based approach', Proc. American Control Conf., June 2010, Baltimore, Maryland, USA.
    19. 19)
      • Mercère, G., Ouvrard, R., Gilson, M., Garnier, H.: `Subspace-based methods for continuous-time model identification of MIMO systems from filtered sampled data', Proc. European Control Conf., July 2007, Kos, Greece.
    20. 20)
    21. 21)
    22. 22)
    23. 23)
      • J. Shao , D. Tu . (1995) The Jackknife and bootstrap.
    24. 24)
      • T. Katayama . (2005) Subspace methods for system identification.
    25. 25)
      • Haverkamp, B., Chou, C., Verhaegen, M., Johansson, R.: `Identification of continuous-time MIMO state space models from sampled data in the presence of process and measurement noise', Proc. IEEE Conf. on Decision and Control, December 1996, Kobe, Japan.
    26. 26)
      • McKelvey, T.: `Identification of state space models from time and frequency data', 1995, PhD, Linköping University, Linköping, Sweden.
    27. 27)
    28. 28)
    29. 29)
    30. 30)
    31. 31)
    32. 32)
    33. 33)
      • Ljung, L.: `Model validation and model error modeling', Proc. Aström Symp. on Control, August 1999, Lund, Sweden.
    34. 34)
      • Ljung, L.: `Identification model validation and control', Proc. IEEE Conf. on Decision and Control, December 1997, San Diego, California, USA.
    35. 35)
    36. 36)
    37. 37)
      • Ramdani, N., Poignet, P.: `Experimental parallel robot dynamic model evaluation with set membership estimation', Proc. IFAC Symp. on System Identification, March 2006, Newcastle, Australia.
    38. 38)
      • R. Horn , C. Johnson . (1985) Matrix analysis.
    39. 39)
    40. 40)
      • Farah, W., Mercère, G., van Wingerden, J.W., Poinot, T.: `Quantification of model uncertainty for a state-space system', Proc. Int. Symp. on Mathematical Theory of Networks and Systems, July 2010, Budapest, Hungary.
    41. 41)
    42. 42)
    43. 43)
    44. 44)
    45. 45)
    46. 46)
    47. 47)
      • M. Moonen , B. De Moor , J. Vandewalle . (1991) SVD-based subspace methods for multivariable continuous-time systems identification.
    48. 48)
      • M. Verhagen , V. Verdult . (2007) Filtering and system identification: a least squares approach.
    49. 49)
      • L. Ljung . (1999) System identification. Theory for the user.
    50. 50)
    51. 51)
      • Haverkamp, B.: `State space identification: theory and practice', 2001, PhD, Delft University of Technology, Delft, The Netherlands.
    52. 52)
    53. 53)
      • Ohta, Y., Kawai, T.: `Continuous-time subspace system identification using generalized orthonormal basis functions', Proc. Int. Symp. on Mathematical Theory of Networks and Systems, July 2004, Leuven, Belgium.
    54. 54)
      • Huang, Y.-F., Gollamudi, S.: `Set-membership identification for adaptive equalization', Proc. Midwest Symp. on Circuits and Systems, August 1995, Rio de Janeiro, Brazil.
    55. 55)
      • Bergamasco, M., Lovera, M.: `Continuous-time subspace identification in closed loop', Proc. 19th Int. Symp. on Mathematical Theory of Networks and Systems, July 2010, Budapest, Hungary.
    56. 56)
      • P. Van Overschee , B. De Moor . (1996) Subspace identification for linear systems. Theory, implementation, applications.
    57. 57)
      • Jansson, M.: `Asymptotic variance analysis of subspace identification methods', Proc. IFAC Symp. on System Identification, June 2000, Santa Barbara, California, USA.
    58. 58)
      • de Vries, D.: `Identification of model uncertainty for control design', 1994, PhD, Delft University of Technology, Delft, The Netherlands.
    59. 59)
      • McKelvey, T.: `Frequency domain system identification with instrumental variable based algorithm', Proc. Biennal Conf. on Mechanical Vibration and Noise, September 1997, Sacramento, Californian, USA.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2010.0725
Loading

Related content

content/journals/10.1049/iet-cta.2010.0725
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading