Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Approximation of explicit model predictive control using regular piecewise affine functions: an input-to-state stability approach

Approximation of explicit model predictive control using regular piecewise affine functions: an input-to-state stability approach

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Piecewise affine (PWA) feedback control laws defined on general polytopic partitions, as for instance obtained by explicit model predictive control, will often be prohibitively complex for fast systems. In this work the authors study the problem of approximating these high-complexity controllers by low-complexity PWA control laws defined on more regular partitions, facilitating faster on-line evaluation. The approach is based on the concept of input-to-state stability (ISS). In particular, the existence of an ISS Lyapunov function (LF) is exploited to obtain a priori conditions that guarantee asymptotic stability and constraint satisfaction of the approximate low-complexity controller. These conditions can be expressed as local semidefinite programs or linear programs, in case of 2-norm or 1, ∞-norm-based ISS, respectively, and apply to PWA plants. In addition, as ISS is a prerequisite for our approximation method, the authors provide two tractable computational methods for deriving the necessary ISS inequalities from nominal stability. A numerical example is provided that illustrates the main results.

References

    1. 1)
      • Ohta, Y., Yokoyama, H.: `Stability analysis of uncertain piecewise linear systems using piecewise quadratic Lyapunov functions', 2010 IEEE ISIC, 2010, p. 2112–2117.
    2. 2)
    3. 3)
      • Marruedo, D.L., Alamo, T., Camacho, E.F.: `Input-to-state stable MPC for constrained discrete-time nonlinear systems with bounded additive uncertainties', Proc. 41st IEEE Conf. on Decision and Control, 2002, 2002, 4, p. 4619–4624.
    4. 4)
    5. 5)
    6. 6)
      • M. de Berg , M. van Kreveld , M. Overmars , O. Cheong . (2008) Computational geometry.
    7. 7)
      • Summers, S., Jones, C.N., Lygeros, J., Morari, M.: `A multiscale approximation scheme for explicit model predictive control with stability, feasibility, and performance guarantees', Proc. 48th IEEE CDC, December 2009, p. 6327–6332.
    8. 8)
      • S. Boyd , L. Vandenberghe . (2004) Convex optimization.
    9. 9)
    10. 10)
    11. 11)
      • J.M. Maciejowski . (2002) Predictive control with constraints.
    12. 12)
    13. 13)
    14. 14)
      • N. Giorgetti , N. Klitgord . GLPKMEX, a Matlab MEX interface for the GLPK library.
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
      • Löfberg, J.: `YALMIP: a toolbox for modeling and optimization in MATLAB', Proc. CACSD Conf., 2004, Taipei, Taiwan.
    20. 20)
    21. 21)
    22. 22)
    23. 23)
      • E.F. Camacho , C. Bordons . (2004) Model predictive control, ‘Series Advanced Textbooks in Control and Signal Processing’.
    24. 24)
      • Jones, C.N., Morari, M.: `Approximate explicit MPC using bilevel optimization', European Control Conf., August 2009, Budapest, Hungary.
    25. 25)
      • A. Makhorin . GLPK (GNU Linear Programming Kit) user's guide.
    26. 26)
      • S. Boyd , L.E. Ghaoui , E. Feron , V. Balakrishnan . (1994) Linear matrix inequalities in system and control theory, ‘Series Studies in Applied Mathematics’.
    27. 27)
      • Hassibi, A., Boyd, S.: `Quadratic stabilization and control of piecewise-linear systems', Proc. 1998 American Control Conf., 1998, 6, p. 3659–3664.
    28. 28)
    29. 29)
    30. 30)
      • Christophersen, F.J., Zeilinger, M.N., Jones, C.N., Morari, M.: `Controller complexity reduction for piecewise affine systems through safe region elimination', 2007 46th IEEE CDC, 2007, p. 4773–4778.
    31. 31)
      • M. Kvasnica , P. Grieder , M. Baotíc . Multi-parametric toolbox (MPT).
    32. 32)
    33. 33)
      • I. Corp . ILOG CPLEX V12.1 user's manual.
    34. 34)
      • J. Rawlings , D. Mayne . (2009) Model predictive control: theory and design.
    35. 35)
    36. 36)
    37. 37)
    38. 38)
    39. 39)
    40. 40)
    41. 41)
    42. 42)
    43. 43)
    44. 44)
      • Oliveri, A., Oliveri, A., Poggi, T., Storace, M.: `Circuit implementation of piecewise-affine functions based on a binary search tree', 2009 ECCTD, 2009, p. 145–148.
    45. 45)
    46. 46)
    47. 47)
    48. 48)
    49. 49)
      • Kvasnica, M., Christophersen, F.J., Herceg, M., Fikar, M.: `Polynomial approximation of closed-form MPC for piecewise affine systems', Proc. 17th IFAC World Congress, 2008, Seoul, Korea, p. 3877–3882.
    50. 50)
    51. 51)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2010.0709
Loading

Related content

content/journals/10.1049/iet-cta.2010.0709
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address