Approximation of explicit model predictive control using regular piecewise affine functions: an input-to-state stability approach
Approximation of explicit model predictive control using regular piecewise affine functions: an input-to-state stability approach
- Author(s): B.A.G. Genuit ; L. Lu ; W.P.M.H. Heemels
- DOI: 10.1049/iet-cta.2010.0709
For access to this article, please select a purchase option:
Buy article PDF
Buy Knowledge Pack
IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.
Thank you
Your recommendation has been sent to your librarian.
- Author(s): B.A.G. Genuit 1 ; L. Lu 1, 2 ; W.P.M.H. Heemels 1
-
-
View affiliations
-
Affiliations:
1: The Hybrid and Networked Systems Group, Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
2: The State Key Laboratory of Integrated Automation for Process Industries, Northeastern University, Shenyang, People's Republic of China
-
Affiliations:
1: The Hybrid and Networked Systems Group, Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Source:
Volume 6, Issue 8,
17 May 2012,
p.
1015 – 1028
DOI: 10.1049/iet-cta.2010.0709 , Print ISSN 1751-8644, Online ISSN 1751-8652
Piecewise affine (PWA) feedback control laws defined on general polytopic partitions, as for instance obtained by explicit model predictive control, will often be prohibitively complex for fast systems. In this work the authors study the problem of approximating these high-complexity controllers by low-complexity PWA control laws defined on more regular partitions, facilitating faster on-line evaluation. The approach is based on the concept of input-to-state stability (ISS). In particular, the existence of an ISS Lyapunov function (LF) is exploited to obtain a priori conditions that guarantee asymptotic stability and constraint satisfaction of the approximate low-complexity controller. These conditions can be expressed as local semidefinite programs or linear programs, in case of 2-norm or 1, ∞-norm-based ISS, respectively, and apply to PWA plants. In addition, as ISS is a prerequisite for our approximation method, the authors provide two tractable computational methods for deriving the necessary ISS inequalities from nominal stability. A numerical example is provided that illustrates the main results.
Inspec keywords: Lyapunov methods; predictive control; approximation theory; feedback; asymptotic stability; mathematical programming
Other keywords: input-to-state stability approach; approximation method; piecewise affine feedback control laws; explicit model predictive control; high-complexity controllers; regular piecewise affine functions; local semidefinite programs; asymptotic stability; PWA; nominal stability; constraint satisfaction; low-complexity PWA control laws; general polytopic partitions; ISS Lyapunov function
Subjects: Optimisation techniques; Optimal control; Control system analysis and synthesis methods; Stability in control theory; Interpolation and function approximation (numerical analysis)
References
-
-
1)
- Ohta, Y., Yokoyama, H.: `Stability analysis of uncertain piecewise linear systems using piecewise quadratic Lyapunov functions', 2010 IEEE ISIC, 2010, p. 2112–2117.
-
2)
- A. Bemporad , C. Filippi . Suboptimal explicit receding horizon control via approximate multiparametric quadratic programming. J. Optim. Theory Appl. , 1 , 9 - 38
-
3)
- Marruedo, D.L., Alamo, T., Camacho, E.F.: `Input-to-state stable MPC for constrained discrete-time nonlinear systems with bounded additive uncertainties', Proc. 41st IEEE Conf. on Decision and Control, 2002, 2002, 4, p. 4619–4624.
-
4)
- G. Grimm , M.J. Messina , S.E. Tuna , A.R. Teel . Nominally robust model predictive control with state constraints. IEEE Trans. Autom. Control , 10 , 1856 - 1870
-
5)
- A. Bemporad , A. Oliveri , T. Poggi , M. Storace . Ultra-fast stabilizing model predictive control via canonical piecewise affine approximations. IEEE Trans. Autom. Control
-
6)
- M. de Berg , M. van Kreveld , M. Overmars , O. Cheong . (2008) Computational geometry.
-
7)
- Summers, S., Jones, C.N., Lygeros, J., Morari, M.: `A multiscale approximation scheme for explicit model predictive control with stability, feasibility, and performance guarantees', Proc. 48th IEEE CDC, December 2009, p. 6327–6332.
-
8)
- S. Boyd , L. Vandenberghe . (2004) Convex optimization.
-
9)
- M. Hovd , S. Olaru . Piecewise quadratic Lyapunov functions for stability verification of approximate explicit MPC. Modeling, Identification Control: A Norwegian Res. Bull. , 2 , 45 - 53
-
10)
- Z.-P. Jiang , Y. Wang . Input-to-state stability for discrete-time nonlinear systems. Automatica , 6 , 857 - 869
-
11)
- J.M. Maciejowski . (2002) Predictive control with constraints.
-
12)
- M. Storace , T. Poggi . Digital architectures realizing piecewise-linear multivariate functions: two FPGA implementations. Int. J. Circuit Theory Appl. , 1 , 1 - 15
-
13)
- M. Baotić , F.J. Christophersen , M. Morari . Constrained optimal control of hybrid systems with a linear performance index. IEEE Trans. Autom. Control , 12 , 1903 - 1919
-
14)
- N. Giorgetti , N. Klitgord . GLPKMEX, a Matlab MEX interface for the GLPK library.
-
15)
- A. Bemporad , M. Morari , V. Dua , E.N. Pistikopoulos . The explicit linear quadratic regulator for constrained systems. Automatica , 3 - 20
-
16)
- M. di Federico , T. Poggi , P. Julián , M. Storace . Further facts about ISS. IEEE Trans. Autom. Control , 4 , 473 - 476
-
17)
- C.N. Jones , M. Morari . Polytopic approximation of explicit model predictive controllers. IEEE Trans. Autom. Control , 11 , 2542 - 2553
-
18)
- M. Storace , L. Repetto , M. Parodi . A method for the approximate synthesis of cellular non-linear networks – part 1: circuit definition. Int. J. Circuit Theory Appl. , 3 , 277 - 297
-
19)
- Löfberg, J.: `YALMIP: a toolbox for modeling and optimization in MATLAB', Proc. CACSD Conf., 2004, Taipei, Taiwan.
-
20)
- D.Q. Mayne , J.B. Rawlings , P.M. Scokaert . Constraint predictive control: stability and optimality. Automatica , 789 - 814
-
21)
- A. Bemporad , F. Borrelli , M. Morari . Model predictive control based on linear programming – the explicit solution. IEEE Trans. Autom. Control , 12 , 1974 - 1985
-
22)
- A. Bemporad , M. Morari . Control of systems integrating logic, dynamics, and constraints. Automatica , 3 , 407 - 427
-
23)
- E.F. Camacho , C. Bordons . (2004) Model predictive control, ‘Series Advanced Textbooks in Control and Signal Processing’.
-
24)
- Jones, C.N., Morari, M.: `Approximate explicit MPC using bilevel optimization', European Control Conf., August 2009, Budapest, Hungary.
-
25)
- A. Makhorin . GLPK (GNU Linear Programming Kit) user's guide.
-
26)
- S. Boyd , L.E. Ghaoui , E. Feron , V. Balakrishnan . (1994) Linear matrix inequalities in system and control theory, ‘Series Studies in Applied Mathematics’.
-
27)
- Hassibi, A., Boyd, S.: `Quadratic stabilization and control of piecewise-linear systems', Proc. 1998 American Control Conf., 1998, 6, p. 3659–3664.
-
28)
- E.D. Sontag . Smooth stabilization implies coprime factorization. IEEE Trans. Autom. Control , 4 , 435 - 443
-
29)
- M. Lazar , W.P.M.H. Heemels , A.R. Teel . Lyapunov functions, stability and input-to-state stability subtleties for discrete-time discontinuous systems. IEEE Trans. Autom. Control , 10 , 2421 - 2425
-
30)
- Christophersen, F.J., Zeilinger, M.N., Jones, C.N., Morari, M.: `Controller complexity reduction for piecewise affine systems through safe region elimination', 2007 46th IEEE CDC, 2007, p. 4773–4778.
-
31)
- M. Kvasnica , P. Grieder , M. Baotíc . Multi-parametric toolbox (MPT).
-
32)
- A. Rantzer , M. Johansson . Piecewise linear quadratic optimal control. IEEE Trans. Autom. Control , 629 - 637
-
33)
- I. Corp . ILOG CPLEX V12.1 user's manual.
-
34)
- J. Rawlings , D. Mayne . (2009) Model predictive control: theory and design.
-
35)
- T.A. Johansen , A. Grancharova . Approximate explicit constrained linear model predictive control via orthogonal search tree. IEEE Trans. Autom. Control , 5 , 810 - 815
-
36)
- M. Lazar , W.P.M.H. Heemels , S. Weiland , A. Bemporad . Stabilizing model predictive control of hybrid systems. IEEE Trans. Autom. Control , 11 , 1813 - 1818
-
37)
- J.F. Sturm . Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Methods Softw. , 625 - 653
-
38)
- M. Johansson , A. Rantzer . Computation of piecewise quadratic Lyapunov functions for hybrid systems. IEEE Trans. Autom. Control , 4 , 555 - 559
-
39)
- M. Lazar , W.P.M.H. Heemels . Predictive control of hybrid systems: Input-to-state stability results for sub-optimal solutions. Automatica , 1 , 180 - 185
-
40)
- P. Tøndel , T.A. Johansen , A. Bemporad . Evaluation of piecewise affine control via binary search tree. Automatica , 5 , 945 - 950
-
41)
- P. Julián , A. Desages , O. Agamennoni . High-level canonical piecewise linear representation using a simplicial partition. IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. , 4 , 463 - 480
-
42)
- M. di Federico , T. Poggi , P. Julián , M. Storace . Integrated circuit implementation of multi-dimensional piecewise-linear functions. Digital Signal Process. , 6 , 1723 - 1732
-
43)
- D. Muñoz de la Peña , A. Bemporad , C. Filippi . Robust explicit MPC based on approximate multiparametric convex programming. IEEE Trans. Autom. Control , 8 , 1399 - 1403
-
44)
- Oliveri, A., Oliveri, A., Poggi, T., Storace, M.: `Circuit implementation of piecewise-affine functions based on a binary search tree', 2009 ECCTD, 2009, p. 145–148.
-
45)
- F. Borrelli , M. Baotíc , A. Bemporad , M. Morari . Dynamic programming for constrained optimal control of discrete-time linear hybrid systems. Automatica , 10 , 1709 - 1721
-
46)
- M. Lazar , D. Muñoz de la Peña , W. Heemels , T. Alamo . On input-to-state stability of min–max nonlinear model predictive control. Syst. Control Lett. , 1 , 39 - 48
-
47)
- G. Ferrari-Trecate , F.A. Cuzzola , D. Mignone , M. Morari . Analysis of discrete-time piecewise affine and hybrid systems. Automatica , 12 , 2139 - 2146
-
48)
- M.J. Messina , S.E. Tuna , A.R. Teel . Discrete-time certainty equivalence output feedback: allowing discontinuous control laws including those from model predictive control. Automatica , 4 , 617 - 628
-
49)
- Kvasnica, M., Christophersen, F.J., Herceg, M., Fikar, M.: `Polynomial approximation of closed-form MPC for piecewise affine systems', Proc. 17th IFAC World Congress, 2008, Seoul, Korea, p. 3877–3882.
-
50)
- B.J.P. Roset , W.P.M.H. Heemels , M. Lazar , H. Nijmeijer . On robustness of constrained discrete-time systems to state measurement errors. Automatica , 4 , 1161 - 1165
-
51)
- F. Bayat , T.A. Johansen , A.A. Jalali . Using hash tables to manage the time-storage complexity in a point location problem: application to explicit model predictive control. Automatica , 3 , 571 - 577
-
1)

Related content
