access icon free Signed directed graph-based hierarchical modelling and fault propagation analysis for large-scale systems

The signed directed graph (SDG) model can be considered as a qualitative model to describe the variables and their cause–effect relations in a continuous process. Such models can allow one to obtain the fault propagation paths using the method of graph search. In this way, the authors can use SDGs to model and analyse the propagation of faults in large-scale industrial systems. However, with increasing system scales, the time requirements of a graph search method would be too onerous. This can be alleviated by transforming a single-layer SDG model into a hierarchical model to improve search efficiency. The hierarchical model would be composed of three layers: the top layer would consist of independent sub-systems; the middle layer would have control systems configuration and the bottom layer would have all the variables. The possible root causes of faults can then be searched in this model, layer by layer according to the initial response of the system. The efficacy of the proposed approach is illustrated by application to a four-tank system and a generator system in a power plant. The methodology presented here can also be used in process hazard analysis.

Inspec keywords: manufacturing systems; search problems; directed graphs; cause-effect analysis; large-scale systems

Other keywords: top layer; power plant; four-tank system; generator system; single-layer SDG model; fault propagation analysis; qualitative model; cause-effect relations; process hazard analysis; independent subsystems; graph search method; large-scale industrial systems; bottom layer; control systems configuration; continuous process; middle layer; signed directed graph-based hierarchical modelling

Subjects: Manufacturing systems; Optimisation techniques; Production management; Optimisation; Multivariable control systems; Control applications in manufacturing processes; Combinatorial mathematics; Combinatorial mathematics

References

    1. 1)
      • 14. Chen, J., Howell, J.: ‘Towards distributed diagnosis of the Tennessee Eastman process benchmark’, Control Eng. Pract., 2002, 10, (9), pp. 971987 (doi: 10.1016/S0967-0661(02)00050-3).
    2. 2)
      • 17. Bauer, M., Cox, J.W., Caveness, M.H., Downs, J.J., Thornhill, N.F.: ‘Finding the direction of disturbance propagation in a chemical process using transfer entropy’, IEEE Tran. Control Syst. Technol., 2007, 15, (1), pp. 1221 (doi: 10.1109/TCST.2006.883234).
    3. 3)
      • 6. Yang, F., Xiao, D., Shah, S.L.: ‘Qualitative fault detection and hazard analysis based on signed directed graphs for large-scale complex systems’, in Zhang, W. (Ed.): ‘Fault detection’ (IN-TECH, Vukovar, Croatia, 2010, 1st edn.), pp. 1550.
    4. 4)
      • 8. Yan, G., Liu, Y., Zhao, W., Xie, G.: ‘SDG fault diagnosis based on granular computing and its application’. Proc. 23rd Chinese Control and Decision Conf., Mianyang, Sichuan, China, May 2011, pp. 25382542.
    5. 5)
      • 28. Hangos, K.M., Cameron, I.T.: ‘Process modelling and model analysis’ (Academic Press, San Diego, CA, 2001, 1st edn.).
    6. 6)
      • 35. Yang, F.: ‘Research on dynamic description and inference approaches in SDG model-based fault analysis’, PhD thesis, Tsinghua University, Beijing, China, 2008.
    7. 7)
      • 19. Yang, F., Shah, S.L., Xiao, D.: ‘Signed directed graph modeling and validation of industrial processes by process knowledge and process data’, Int. J. Appl. Math. Comput. Sci., 2012, 22, (1), pp. 4153.
    8. 8)
      • 16. Bauer, M., Thornhill, N.F.: ‘A practical method for identifying the propagation path of plant-wide disturbances’, J. Process. Control, 2008, 18, (7–8), pp. 707719 (doi: 10.1016/j.jprocont.2007.11.007).
    9. 9)
      • 5. Yang, F., Xiao, D.: ‘Review of SDG modeling and its application’, Control Theory Appl., 2005, 22, (9), pp. 767774.
    10. 10)
      • 31. Jiang, H., Patwardhan, R., Shah, S.L.: ‘Root cause diagnosis of plant-wide oscillations using the concept of adjacency matrix’, J. Process. Control, 2009, 19, (8), pp. 13471354 (doi: 10.1016/j.jprocont.2009.04.013).
    11. 11)
      • 32. Mah, R.S.H.: ‘Chemical process structures and information flows’ (Butterworth Publishers, Boston, MA, 1990, 1st edn.).
    12. 12)
      • 33. Rahman, A., Choudhury, M.A.A.S.: ‘Detection of control loop interactions and prioritization of control loop maintenance’, Control Eng. Pract., 2011, 19, (7), pp. 723731 (doi: 10.1016/j.conengprac.2011.03.007).
    13. 13)
      • 25. Thambirajah, J., Benabbas, L., Bauer, M., Thornhill, N.F.: ‘Cause-and-effect analysis in chemical processes utilizing XML, plant connectivity and quantitative process history’, Comput. Chem. Eng., 2009, 33, pp. 503512 (doi: 10.1016/j.compchemeng.2008.10.002).
    14. 14)
      • 23. Maurya, M.R., Rengaswamy, R., Venkatasubramanian, V.: ‘A systematic framework for the development and analysis of signed digraphs for chemical processes. 1. Algorithms and analysis’, Ind. Eng. Chem. Res., 2003, 42, (20), pp. 48114877 (doi: 10.1021/ie0206453).
    15. 15)
      • 18. Duan, P., Yang, F., Chen, T., Shah, S.L.: ‘Detection of direct causality based on process data’. Proc. 2012 American Control Conf., Montreal, QC, Canada, June 2012, pp. 35223527.
    16. 16)
      • 22. Oyeleye, O.O., Kramer, M.A.: ‘Qualitative simulation of chemical process systems: steady-state analysis’, AIChE J., 1988, 34, (9), pp. 14411454 (doi: 10.1002/aic.690340906).
    17. 17)
      • 11. Yang, F., Xiao, D.: ‘Hierarchical description of SDG model and its fault inference’. Proc. 2006 Seminar on Production Safety and Control in Petrochemical Industry, Beijing, China, October 2006, pp. 15.
    18. 18)
      • 12. Maurya, M.R., Rengaswamy, R., Venkatasubramanian, V.: ‘A systematic framework for the development and analysis of signed digraphs for chemical processes. 2. Control loops and flowsheet analysis’, Ind. Eng. Chem. Res., 2003, 42, (20), pp. 47894810 (doi: 10.1021/ie020644a).
    19. 19)
      • 21. Gao, D., Wu, C., Zhang, B., Ma, X.: ‘Signed directed graph and qualitative trend analysis based fault diagnosis in chemical industry’, Chin. J. Chem. Eng., 2010, 18, (2), pp. 265276 (doi: 10.1016/S1004-9541(08)60352-3).
    20. 20)
      • 10. Gentil, S., Montmain, J.: ‘Hierarchical representation of complex systems for supporting human decision making’, Adv. Eng. Inf., 2004, 18, (3), pp. 143159 (doi: 10.1016/j.aei.2004.10.001).
    21. 21)
      • 1. Venkatasubramanian, V., Rengaswamy, R., Kavuri, S.N.: ‘A review of process fault detection and diagnosis. Part II: qualitative models and search strategies’, Comput. Chem. Eng., 2003, 27, (3), pp. 313326 (doi: 10.1016/S0098-1354(02)00161-8).
    22. 22)
      • 36. Jin, Y.: ‘Process control’ (Tsinghua University Press, Beijing, China, 1993, 1st edn.).
    23. 23)
      • 2. Thornhill, N.F., Horch, A.: ‘Advances and new directions in plant-wide disturbance detection and diagnosis’, Control Eng. Pract., 2007, 15, (10), pp. 11961206 (doi: 10.1016/j.conengprac.2006.10.011).
    24. 24)
      • 29. Lü, N.: ‘Study on fault diagnosis in process industry based on signed digraphs’, PhD thesis, Tsinghua University, Beijing, China, 2008.
    25. 25)
      • 30. Yang, F., Shah, S.L., Xiao, D.: ‘SDG model-based analysis of fault propagation in control systems’. Proc. 22nd Canadian Conf. on Electrical and Computer Engineering, St John's, Canada, May 2009, pp. 11521157.
    26. 26)
      • 15. Mosterman, P.J., Biswas, G.: ‘Diagnosis of continuous valued systems in transient operating regions’, IEEE Tran. Syst. Man Cybern. A, 1999, 29, (6), pp. 554565 (doi: 10.1109/3468.798059).
    27. 27)
      • 4. Iri, M, Aoki, K., O'Shima, E., Matsuyama, H.: ‘A graphical approach to the problem of locating the origin of the system failure’, J. Oper. Res. Soc. Jpn., 1980, 23, (4), pp. 295311.
    28. 28)
      • 24. Yim, S.Y., Ananthakumar, H.G., Benabbas, L., Drath, R., Thornhill, N.F.: ‘Using process topology in plant-wide control loop performance assessment’, Comput. Chem. Eng., 2006, 31, (2), pp. 8699 (doi: 10.1016/j.compchemeng.2006.05.004).
    29. 29)
      • 20. Maurya, M.R., Rengaswamy, R., Venkatasubramanian, V.: ‘A signed directed graph and qualitative trend analysis-based framework for incipient fault’, Chem. Eng. Res. Des., 2007, 85, (10), pp. 14071422 (doi: 10.1016/S0263-8762(07)73181-7).
    30. 30)
      • 9. Xie, G., Liu, J., Chen, Z.: ‘Hierarchy fault diagnosis based on signed directed graphs model’. Proc. 24th Chinese Control and Decision Conf., Taiyuan, China, May 2012, pp. 22702274.
    31. 31)
      • 7. Zhang, Z., Wu, C., Zhang, B., Xia, T., Li, A.: ‘SDG multiple fault diagnosis by real-time inverse inference’, Reliab. Eng. Syst. Saf., 2005, 87, (2), pp. 173189 (doi: 10.1016/j.ress.2004.04.008).
    32. 32)
      • 13. Chen, J., Howell, J.: ‘A self-validating control system based approach to plant fault detection and diagnosis’, Comput. Chem. Eng., 2001, 25, (2–3), pp. 337358 (doi: 10.1016/S0098-1354(00)00661-X).
    33. 33)
      • 26. Lin, C.-T.: ‘Structural controllability’, IEEE Trans. Autom. Control, 1974, 19, (3), pp. 201208 (doi: 10.1109/TAC.1974.1100557).
    34. 34)
      • 3. Iri, M., Aoki, K., O'shima, E., Matsuyama, H.: ‘An algorithm for diagnosis of system failures in the chemical process’, Comput. Chem. Eng., 1979, 3, (1–4), pp. 489493 (doi: 10.1016/0098-1354(79)80079-4).
    35. 35)
      • 27. Maza, S., Simon, C., Boukhobza, T.: ‘Impact of the actuator failures on the structural controllability of linear systems: a graph theoretical approach’, IET Control Theory Appl., 2012, 6, (3), pp. 412419 (doi: 10.1049/iet-cta.2011.0166).
    36. 36)
      • 34. Doyle, R.J., Chien, S.A., Fayyad, U.M., Wyatt, E.J.: ‘Focused real-time systems monitoring based on multiple anomaly models’. Proc. Seventh Int. Workshop on Qualitative Reasoning About Physical Systems, Eastsound, WA, May 1993, pp. 7582.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2010.0660
Loading

Related content

content/journals/10.1049/iet-cta.2010.0660
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading