http://iet.metastore.ingenta.com
1887

Least squares-based recursive and iterative estimation for output error moving average systems using data filtering

Least squares-based recursive and iterative estimation for output error moving average systems using data filtering

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

For parameter estimation of output error moving average (OEMA) systems, this study combines the auxiliary model identification idea with the filtering theory, transforms an OEMA system into two identification models and presents a filtering and auxiliary model-based recursive least squares (F-AM-RLS) identification algorithm. Compared with the auxiliary model-based recursive extended least squares algorithm, the proposed F-AM-RLS algorithm has a high computational efficiency. Moreover, a filtering and auxiliary model-based least squares iterative (F-AM-LSI) identification algorithm is derived for OEMA systems with finite measurement input–output data. Compared with the F-AM-RLS approach, the proposed F-AM-LSI algorithm updates the parameter estimation using all the available data at each iteration, and thus can generate highly accurate parameter estimates.

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
    24. 24)
    25. 25)
    26. 26)
      • C.G. Goodwin , K.S. Sin . (1984) Adaptive filtering prediction and control.
    27. 27)
    28. 28)
    29. 29)
    30. 30)
    31. 31)
    32. 32)
    33. 33)
    34. 34)
    35. 35)
    36. 36)
    37. 37)
    38. 38)
    39. 39)
    40. 40)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2010.0416
Loading

Related content

content/journals/10.1049/iet-cta.2010.0416
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address