Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Achievable performance bounds for tall MIMO systems

Achievable performance bounds for tall MIMO systems

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, a methodology to compute achievable performance bounds for non-right-invertible, stable, discrete-time MIMO systems is proposed. This methodology is based on the definition of a new performance index, which is the cumulative, squared and exponentially weighted tracking error to a step reference. The results include expressions for the optimal value of this performance index and for the Youla parameter that is able to achieve such performance. For a particular class of single-input multiple-output plants, closed-form expressions depending on the dynamic features of the plant are also obtained. A discussion on the selection of the speed of decay of the exponential weight and its influence on optimal closed-loop stability is included. Numerical examples are presented to illustrate the results.

References

    1. 1)
      • Carrasco, D.: `Diseño óptimo de controladores utilizando una norma cuadrática con ponderación en el tiempo', 2009, MS, Departamento de Electrónica, UTFSM, Valparaíso, Chile.
    2. 2)
      • S. Skogestad , I. Postlethwaite . (1996) Multivariable feedback control: analysis and design.
    3. 3)
    4. 4)
      • Freudenberg, J., Middleton, R.: `Feedback systems with an almost rank deficient plant', Proc. American Control Conf., June 1999, San Diego, California, 1, p. 409–413.
    5. 5)
    6. 6)
      • Dewey, J.S., Devasia, S.: `Experimental and theoretical results in output-trajectory redesign for flexible structures', Proc. 35th IEEE Decision and Control, December 1996, 4, p. 4210–4215.
    7. 7)
      • K. Zhou , J.C. Doyle , K. Glover . (1996) Robust and optimal control.
    8. 8)
      • G.C. Goodwin , S. Graebe , M.E. Salgado . (2001) Control system design.
    9. 9)
      • R. Churchill , J. Brown . (1984) Complex variable and applications.
    10. 10)
      • P. Albertos , A. Sala . (2004) Multivariable control systems: an engineering approach.
    11. 11)
    12. 12)
    13. 13)
    14. 14)
      • Toochinda, V., Klawitter, T., Hollot, C.V., Chait, Y.: `A single-input two-output feedback formulation for ANC problems', Proc. 2001 American Control Conf., June 2001, 2, p. 923–928.
    15. 15)
    16. 16)
      • M. Salgado . Inversion, un concepto unificador en la enseñanza del control automático. Revista Iberoamericana de Automática y Informática industrial , 5 - 15
    17. 17)
    18. 18)
      • S. Hara , T. Bakhtiar , M. Kanno . The best achievable ℋ2 tracking performances for SIMO feedback control systems. J. Control Sci. Eng.
    19. 19)
      • W.S. Su , L. Qiu , J. Chen . Fundamental performance limitations in tracking sinusoidal signals. IEEE Trans. Autom. Control , 8 , 1371 - 1380
    20. 20)
      • Morse, N., Smith, R., Paden, B., Antaki, J.: `Position sensed and self-sensing magnetic bearing configurations and associated robustness limitations', Proc. 37th IEEE Conf. on Decision and Control, 1998, 3, p. 2599–2604.
    21. 21)
    22. 22)
      • Munro, N.: `Multivariable control applications: turbine and chemical plant examples', IEE Colloquium on Successful Industrial Applications of Multivariable Analysis, February 1990, p. 1–4.
    23. 23)
    24. 24)
      • B.A. Francis . (1987) A course in .
    25. 25)
      • J.M. Maciejowski . (1989) Multivariable feedback design.
    26. 26)
    27. 27)
      • M.F. Witcher , T.J. McAvoy . Interacting control systems: steady-state and dynamic measurement of interaction. ISA Trans. , 3 , 35 - 41
    28. 28)
    29. 29)
    30. 30)
      • H. Lütkepohl . (1996) Handbook of matrices.
    31. 31)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2010.0328
Loading

Related content

content/journals/10.1049/iet-cta.2010.0328
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address