Achievable performance bounds for tall MIMO systems
Achievable performance bounds for tall MIMO systems
- Author(s): M.A. García ; M.E. Salgado ; E.I. Silva
- DOI: 10.1049/iet-cta.2010.0328
For access to this article, please select a purchase option:
Buy article PDF
Buy Knowledge Pack
IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.
Thank you
Your recommendation has been sent to your librarian.
- Author(s): M.A. García 1 ; M.E. Salgado 1 ; E.I. Silva 1
-
-
View affiliations
-
Affiliations:
1: Department of Electronic Engineering, Universidad Técnica Federico Santa María, Valparaíso, Chile
-
Affiliations:
1: Department of Electronic Engineering, Universidad Técnica Federico Santa María, Valparaíso, Chile
- Source:
Volume 5, Issue 5,
17 March 2011,
p.
736 – 743
DOI: 10.1049/iet-cta.2010.0328 , Print ISSN 1751-8644, Online ISSN 1751-8652
In this study, a methodology to compute achievable performance bounds for non-right-invertible, stable, discrete-time MIMO systems is proposed. This methodology is based on the definition of a new performance index, which is the cumulative, squared and exponentially weighted tracking error to a step reference. The results include expressions for the optimal value of this performance index and for the Youla parameter that is able to achieve such performance. For a particular class of single-input multiple-output plants, closed-form expressions depending on the dynamic features of the plant are also obtained. A discussion on the selection of the speed of decay of the exponential weight and its influence on optimal closed-loop stability is included. Numerical examples are presented to illustrate the results.
Inspec keywords: MIMO systems; least mean squares methods; stability; closed loop systems; discrete time systems; performance index; optimal control
Other keywords:
Subjects: Discrete control systems; Multivariable control systems; Stability in control theory; Optimal control; Interpolation and function approximation (numerical analysis)
References
-
-
1)
- Carrasco, D.: `Diseño óptimo de controladores utilizando una norma cuadrática con ponderación en el tiempo', 2009, MS, Departamento de Electrónica, UTFSM, Valparaíso, Chile.
-
2)
- S. Skogestad , I. Postlethwaite . (1996) Multivariable feedback control: analysis and design.
-
3)
- G.C. Goodwin , M.E. Salgado , J.I. Yuz . Performance limitations for linear feedback systems in the presence of plant uncertainty. IEEE Trans. Autom. Control , 8 , 1312 - 1319
-
4)
- Freudenberg, J., Middleton, R.: `Feedback systems with an almost rank deficient plant', Proc. American Control Conf., June 1999, San Diego, California, 1, p. 409–413.
-
5)
- J. Chen , S. Hara , G. Chen . Best tracking and regulation performance under control energy constraint. IEEE Trans. Autom. Control , 8 , 1320 - 1336
-
6)
- Dewey, J.S., Devasia, S.: `Experimental and theoretical results in output-trajectory redesign for flexible structures', Proc. 35th IEEE Decision and Control, December 1996, 4, p. 4210–4215.
-
7)
- K. Zhou , J.C. Doyle , K. Glover . (1996) Robust and optimal control.
-
8)
- G.C. Goodwin , S. Graebe , M.E. Salgado . (2001) Control system design.
-
9)
- R. Churchill , J. Brown . (1984) Complex variable and applications.
-
10)
- P. Albertos , A. Sala . (2004) Multivariable control systems: an engineering approach.
-
11)
- S. Skogestad , M. Morari . Implications of large RGA elements on control performance. Ind. Eng. Chem. Res. , 2323 - 2330
-
12)
- E.H. Bristol . On a new measure of interaction for multivariable process control. IEEE Trans. Autom. Control , 133 - 134
-
13)
- C. Oara . Constructive solutions to spectral and inner-outer factorizations with respect to the disk. Automatica , 1855 - 1866
-
14)
- Toochinda, V., Klawitter, T., Hollot, C.V., Chait, Y.: `A single-input two-output feedback formulation for ANC problems', Proc. 2001 American Control Conf., June 2001, 2, p. 923–928.
-
15)
- J. Chen , L. Qiu , O. Toker . Limitations on maximal tracking accuracy. IEEE Trans. Autom. Control , 2 , 326 - 331
-
16)
- M. Salgado . Inversion, un concepto unificador en la enseñanza del control automático. Revista Iberoamericana de Automática y Informática industrial , 5 - 15
-
17)
- T. Bakhtiar , S. Hara . ℋ2 regulation performance limitations for SIMO linear timeinvariant feedback control systems. Automatica , 3 , 659 - 670
-
18)
- S. Hara , T. Bakhtiar , M. Kanno . The best achievable ℋ2 tracking performances for SIMO feedback control systems. J. Control Sci. Eng.
-
19)
- W.S. Su , L. Qiu , J. Chen . Fundamental performance limitations in tracking sinusoidal signals. IEEE Trans. Autom. Control , 8 , 1371 - 1380
-
20)
- Morse, N., Smith, R., Paden, B., Antaki, J.: `Position sensed and self-sensing magnetic bearing configurations and associated robustness limitations', Proc. 37th IEEE Conf. on Decision and Control, 1998, 3, p. 2599–2604.
-
21)
- A.A. Peters , M.E. Salgado , E.I. Silva . Performance bounds in linear control of unstable MIMO systems with pole location constraint. Syst. Control Lett. , 5 , 392 - 399
-
22)
- Munro, N.: `Multivariable control applications: turbine and chemical plant examples', IEE Colloquium on Successful Industrial Applications of Multivariable Analysis, February 1990, p. 1–4.
-
23)
- A.A. Peters , M.E. Salgado . Performance bounds in ℋ∞ optimal control for stable SISO Plants with arbitrary relative degree. IEEE Trans. Autom. Control , 8 , 1987 - 1990
-
24)
- B.A. Francis . (1987) A course in .
-
25)
- J.M. Maciejowski . (1989) Multivariable feedback design.
-
26)
- M. Salgado , A. Conley . MIMO interaction measure and controller structure selection. Int. J. Control , 4 , 367 - 383
-
27)
- M.F. Witcher , T.J. McAvoy . Interacting control systems: steady-state and dynamic measurement of interaction. ISA Trans. , 3 , 35 - 41
-
28)
- X. Litrico . Robust IMC flow control of SIMO dam-river open-channel systems. IEEE Trans. Control Syst. Technol. , 3 , 432 - 437
-
29)
- O. Toker , J. Chen , L. Qiu . Tracking performance limitations in LTI multivariable discrete-time systems. IEEE Trans. Circuits Syst. I , 5 , 657 - 670
-
30)
- H. Lütkepohl . (1996) Handbook of matrices.
-
31)
- G. Chen , J. Chen , R. Middleton . Optimal tracking performance for SIMO systems. IEEE Trans. Autom. Control , 10 , 1770 - 1775
-
1)