Direct identification of continuous-time linear parameter-varying input/output models

Access Full Text

Direct identification of continuous-time linear parameter-varying input/output models

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Controllers in the linear parameter-varying (LPV) framework are commonly designed in continuous time (CT) requiring accurate and low-order CT models of the system. However, identification of CT-LPV models is largely unsolved, representing a gap between the available LPV identification methods and the needs of control synthesis. In order to bridge this gap, direct identification of CT-LPV systems in an input–output setting is investigated, focusing on the case when the noise part of the data generating system is an additive discrete-time (DT) coloured noise process. To provide consistent model parameter estimates in this setting, a refined instrumental variable (IV) approach is proposed and its properties are analysed based on the prediction-error framework. The benefits of the introduced direct CT-IV approach over identification in the DT case are demonstrated through a representative simulation example inspired by the Rao–Garnier benchmark.

Inspec keywords: discrete time systems; identification; continuous time systems; control system synthesis

Other keywords: additive discrete-time coloured noise process; low-order CT models; control synthesis; continuous-time systems; controller design; refined instrumental variable; data generating system; linear parameter-varying input-output models; input-output setting; prediction-error; direct identification

Subjects: Simulation, modelling and identification; Control system analysis and synthesis methods; Discrete control systems

References

    1. 1)
    2. 2)
    3. 3)
      • G.C. Goodwin , S. Graebe , M.E. Salgado . (2001) Control system design.
    4. 4)
      • L. Ljung . (1999) System identification: theory for the user.
    5. 5)
    6. 6)
      • Tóth, R., Heuberger, P.S.C., Van den Hof, P.M.J.: `Flexible model structures for LPV identification with static scheduling dependency', Forty-Seventh IEEE Conf. on Decision and Control, December 2008, Cancun, Mexico, p. 4522–4527.
    7. 7)
      • M.G. Wassink , M. van de Wal , C.W. Scherer , O. Bosgra . LPV control for a wafer stage: beyond the theoretical solution. Control Eng. Pract. , 231 - 245
    8. 8)
      • Østergaard, K.Z., Stousturp, J., Barth, P.: `Rate bounded linear parameter varying control of a wind turbine in full load operation', 17thIFAC World Congress, July 2008, Seoul, Korea.
    9. 9)
      • R. Tóth . (2010) Modeling and identification of linear parameter-varying systems.
    10. 10)
    11. 11)
      • K. Zhou , J.C. Doyle . (1997) Essentials of robust control.
    12. 12)
    13. 13)
      • Ljung, L.: `Experiments with identification of continuous-time models', Fifteenth IFAC Symp. on System Identification, July 2009, Saint-Malo, France.
    14. 14)
    15. 15)
    16. 16)
      • Tóth, R., Felici, F., Heuberger, P.S.C., Van den Hof, P.M.J.: `Discrete time LPV I/O and state space representations, differences of behavior and pitfalls of interpolation', European Control Conf., July 2007, Kos, Greece, p. 5418–5425.
    17. 17)
      • T. Söderström , P. Stoica . (1983) Instrumental variable methods for system identification.
    18. 18)
      • Laurain, V., Gilson, M., Garnier, H., Young, P.C.: `Refined instrumental variable methods for identification of Hammerstein continuous-time Box-Jenkins models', Forty-Seventh IEEE Conf. on Decision and Control, December 2008, Cancun, Mexico.
    19. 19)
      • K.E. Atkinson . (1989) An introduction to numerical analysis.
    20. 20)
      • Ljung, L.: `Initialisation aspects for subspace and output-error identification methods', European Control Conf. (ECC'2003), September 2003, Cambridge, UK.
    21. 21)
      • G. Rao , H. Garnier . Identification of continuous-time systems: direct or indirect?. Syst. Sci. , 3 , 25 - 50
    22. 22)
      • Tóth, R., Lovera, M., Heuberger, P.S.C., Van den Hof, P.M.J.: `Discretization of linear fractional representations of LPV systems', Forty-Eighth IEEE Conf. on Decision and Control, December 2009, Shanghai, China, p. 7424–7429.
    23. 23)
    24. 24)
    25. 25)
      • Wijnheijmer, F., Naus, G., Post, W., Steinbuch, M., Teerhuis, P.: `Modeling and LPV control of an electro-hydraulic servo system', IEEE Int. Conf. on Control Applications, October 2006, Munich, Germany, p. 3116–3120.
    26. 26)
      • H. Garnier , L. Wang . (2008) Identification of continuous-time models from sampled data.
    27. 27)
      • P.C. Young . The refined instrumental variable method: unified estimation of discrete and continuous-time transfer function models. J. Eur. Syst. Autom. , 149 - 179
    28. 28)
    29. 29)
      • Dettori, M., Scherer, C.: `LPV design for a CD player: an experimental evaluation of performance', Fortieth IEEE Conf. on Decision and Control, December 2001, Orlando, Florida, USA, p. 4711–4716.
    30. 30)
    31. 31)
      • P.C. Young . (1984) Recursive estimation and time-series analysis.
    32. 32)
    33. 33)
      • M. Gilson , H. Garnier , P.C. Young , P. Van den Hof . Optimal instrumental variable method for closed-loop identification. IET Control Theory Appl.
    34. 34)
      • P. Young , H. Garnier , M. Gilson , H. Garnier , L. Wang . (2008) Refined instrumental variable identification of continous-time hybrid Box–Jenkins models, Identification of continuous-time models from sampled data.
    35. 35)
      • Rao, G., Garnier, H.: `Numerical illustrations of the relevance of direct continuous-time model identification', Fifteenth IFAC World Congress, 2002, Barcelona, Spain.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2010.0218
Loading

Related content

content/journals/10.1049/iet-cta.2010.0218
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading