http://iet.metastore.ingenta.com
1887

Finite iterative algorithm for solving coupled Lyapunov equations appearing in discrete-time Markov jump linear systems

Finite iterative algorithm for solving coupled Lyapunov equations appearing in discrete-time Markov jump linear systems

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

An iterative algorithm for solving coupled algebraic Lyapunov equations appearing in discrete-time linear systems with Markovian transitions is established. The algorithm is computationally efficient since it can obtain the solution within finite steps in absence of round-off errors. Another feature of the proposed algorithm is that it can be implemented by using original coeffiecient matrices. A numerical example is given to show the effectiveness of the proposed algorithm.

References

    1. 1)
      • E.K. Boukas . H∞ control of discrete-time Markov jump systems with bounded transition probabilities. Optim. Control Appl. Math. , 477 - 494
    2. 2)
      • J.C. Geromel , A.P.C. Goncalves , R.R. Firavanti . Dynamic output feedback control of discrete-time Markov jump linear systems through linear matrix inequalities. Soc. Ind. Appl. Math. , 2 , 573 - 593
    3. 3)
      • A. Czornik , A. Swierniak . On the sensitivity of the coupled continuous-time Lyapunov equation. IEEE Trans. Autom. Control , 47 , 1138 - 1142
    4. 4)
      • M.D. Frago , J. Baczynski . Lyapunov coupled equations for continuous-time infinite Markov jump linear systems. J. Math. Anal. Appl. , 319 - 335
    5. 5)
      • B.Z. Gajic . Parallel algorithm for solving coupled algebraic Lyapunov equations of discrete-time jump linear systems. Comput. Math. Appl. , 7 , 1 - 4
    6. 6)
      • Q. Wang , J. Lam , Y. Wei , T. Chen . Iterative solutions of coupled discrete Markovian jump Lyapunov equations. Comput. Math. Appl. , 843 - 850
    7. 7)
      • I. Borno . Parallel computation of the solutions of coupled algebraic Lyapunov equations. Automatica , 9 , 1345 - 1347
    8. 8)
      • Z. Gajic , I. Borno . Lyapunov iterations for optimal control of jump linear systems at steady state. IEEE Trans. Autom. Control , 40 , 1971 - 1975
    9. 9)
      • Gajica, Z., Losadab, R.: `Monotonicity of algebraic Lyapunov iterations for optimal control of jump parameter linear systems', Proc. American Control Conf., 1998, 6, p. 744–745.
    10. 10)
      • Z. Gajica , R. Losadab . Monotonicity of algebraic Lyapunov iterations for optimal control of jump parameter linear systems. Syst. Control Lett. , 175 - 181
    11. 11)
      • F. Ding , T. Chen . On iterative solutions of general coupled matrix equations. SIAM J. Control Optim. , 6 , 2269 - 2284
    12. 12)
      • F. Ding , T. Chen . Iterative least squares solutions of coupled Sylvester matrix equations. Syst. Control Lett. , 2 , 95 - 107
    13. 13)
      • L. Xie , J. Ding , F. Ding . Gradient-based iterative solutions for general linear matrix equations. Comput. Math. Appl. , 7 , 1441 - 1448
    14. 14)
      • F. Ding , T. Chen . Hierarchical gradient-based identification of multivariable discrete-time systems. Automatica , 2 , 315 - 325
    15. 15)
      • F. Ding , T. Chen . Hierarchical least squares identification methods for multivariable systems. IEEE Trans. Autom. Control , 3 , 397 - 402
    16. 16)
      • F. Ding , P.X. Liu , J. Ding . Iterative solutions of the generalized Sylvester matrix equations by using the hierarchical identification principle. Appl. Math. Comput. , 1 , 41 - 50
    17. 17)
      • F. Ding , T. Chen . Gradient based iterative algorithms for solving a class of matrix equations. IEEE Trans. Autom. Control , 8 , 1216 - 1221
    18. 18)
      • J. Ding , Y. Liu , F. Ding . Iterative solutions to matrix equations of the form AiXBi=Fi. Comput. Math. Appl. , 11 , 3500 - 3507
    19. 19)
      • B. Zhou , G.R. Duan , Z.Y. Li . Gradient based iterative algorithm for solving coupled matrix equations. Syst. Control Lett. , 327 - 333
    20. 20)
      • F. Ding . Transformations between some special matrices. Comput. Math. Appl. , 8 , 2676 - 2695
    21. 21)
      • A.G. Wu , G. Feng , J. Hu , G.R. Duan . Closed-form solutions to the nonhomogeneous Yakubovich-conjugate matrix equation. Appl. Math. Comput. , 2 , 442 - 450
    22. 22)
      • A.G. Wu , G. Feng , G.R. Duan , W.J. Wu . Closed-form solutions to Sylvester-conjugate matrix equations. Comput. Math. Appl. , 1 , 95 - 111
    23. 23)
      • A.G. Wu , G. Feng , G.R. Duan , W.J. Wu . Iterative solutions to coupled Sylvester-conjugate matrix equations. Comput. Math. Appl. , 1 , 54 - 66
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2010.0147
Loading

Related content

content/journals/10.1049/iet-cta.2010.0147
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address