Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Necessary and sufficient condition for robust stability of discrete-time descriptor polytopic systems

Necessary and sufficient condition for robust stability of discrete-time descriptor polytopic systems

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study investigates the robust stability of discrete-time descriptor polytopic systems. Necessary and sufficient conditions for robust stability expressed as parameterised linear matrix inequalities (LMIs) are obtained. Furthermore, the parameterised LMIs are reduced to parameter-independent and finite-dimensional LMIs. Finally, two numerical examples are given, illustrating the effectiveness of the proposed method.

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
      • Chesi, G.: `Robust analysis of linear systems affected by time-invariant parametric uncertainty', Proc. 42nd IEEE Conf. on Decision Control, 2003, p. 5019–5024.
    5. 5)
    6. 6)
      • Masubuchi, I., Kato, J., Saeki, M., Ohara, A.: `Gain-scheduled controller design based on descriptor representation of LPV system: application to flight vehicle control', Proc. 43rd IEEE Conf. on Decision Control, 2004, p. 815–820.
    7. 7)
      • S. Boyd , L.E. Ghaoui , E. Feron , V. Balakrishnan . (1994) Linear matrix inequalities in system and control theory.
    8. 8)
    9. 9)
    10. 10)
      • Bouali, A., Yagoubi, M., Chevrel, P.: ` gain scheduling control for rational LPV systems using the descriptor framework', Proc. 47th IEEE Conf. on Decision Control, 2008, p. 3878–3883.
    11. 11)
    12. 12)
      • Gao, X.Y., Duan, G.R., Zhang, X.: `Parameter-dependent Lyapunov function approach to robust stability analysis for discrete-time descriptor polytopic systems', Proc. 48th IEEE Conf. on Decision Control, 2009, p. 1139–1144.
    13. 13)
      • Sakuwa, R., Fujisaki, Y.: `Robust stability analysis of single-parameter dependent descriptor systems', Proc. 44th IEEE Conf. on Decision Control, 2005, p. 2933–2937.
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
      • S. Savov , I. Popchev . Relaxed robust stability analysis. Compt. Rend. Acad. Bulg. Sci. , 8 , 1001 - 1008
    19. 19)
      • Liang, J.R., Gong, W.Z.: `LMI conditions for robust stability of discrete-time uncertain singular systems', Proc. 2009 IEEE Int. Conf. on Networking, Sensing and Control, 2009, p. 345–349.
    20. 20)
    21. 21)
      • H.E. Emara-Shabaik , M.S. Mahmoud , Y. Shi . H2 and H∞ filtering for linear systems with unknown inputs and polytopic uncertainty. Int. J. Innov. Comput. Inf. Control , 5 , 2211 - 2220
    22. 22)
      • L. Dai , M. Thoma , A. Wyner . Introduction to discrete‐time sigular systems, Singular Control Systems.
    23. 23)
    24. 24)
      • Sato, M., Peaucelle, D.: `Robust stability/performance analysis for linear time-invariant polynomially parameter-dependent systems using polynomially parameter-dependent Lyapunov functions', Proc. 45th IEEE Conf. on Decision Control, 2006, p. 5807–5813.
    25. 25)
      • Bouali, A., Yagoubi, M., Chevrel, P.: ` gain scheduled observer based controllers for rational LPV systems', Proc. Tenth Int. Conf. on Control, Automation, Robotics and Vision, 2008, p. 1811–1816.
    26. 26)
      • Oishi, Y.: `A matrix-dilation approach to robust semidefinite programming and its error bound', Proc. American Control Conf., 2006, p. 123–129.
    27. 27)
    28. 28)
      • E.F. Beckenbach , R. Bellman . (1983) Inequalities.
    29. 29)
    30. 30)
      • K. Narendra , J. Taylor . (1973) Frequency domain criteria for absolute stability.
    31. 31)
    32. 32)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2010.0145
Loading

Related content

content/journals/10.1049/iet-cta.2010.0145
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address