Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Gain-scheduled Smith proportional–integral derivative controllers for linear parameter varying first-order plus time-varying delay systems

Gain-scheduled Smith proportional–integral derivative controllers for linear parameter varying first-order plus time-varying delay systems

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Practical control problems often deal with parameter-varying uncertain systems that can be described by a first-order-plus-delay (FOPD) model. In this paper, a new approach to design gain-scheduled robust linear parameter varying (LPV) propotional–intergral derivative controllers with pole placement constraints through linear matrix inequalities (LMI) regions is proposed. The controller structure includes a Smith Predictor (SP) to deal with the delays. System parameter variations are measured online and used to schedule the controller and the SP. Although the known part of the delay is compensated with the ‘delay scheduling’ SP, the proposed approach allows to consider uncertainty in the delay estimation. This uncertainty is taken into account in the controller design as an unstructured dynamic uncertainty. Finally, two applications are used to assess the proposed methodology: a simulated artificial example and a simulated physical system based on an open canal system used for irrigation purposes. Both applications are represented by FOPD models with large and variable delays as well as parameters that depend on the operating conditions.

References

    1. 1)
      • S. Skogestad , I. Postlethwaite . (1997) Multivariable feedback control. Analysis and design.
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
      • PID'00: ‘Past, present and future of PID Control, IFAC Workshop on Digital Control’, ESAII Department, UPC, Terrassa, Spain, 2000.
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
      • M. Morari , E. Zafirou . (1989) Robust process control.
    13. 13)
    14. 14)
      • Y. Bolea , V. Puig , J. Blesa , M. Gómez , J. Rodellar . A quasi-LPV model for gain-scheduling canal control. Arch. Control Sci. , 299 - 313
    15. 15)
      • L. Ljung . (1987) System identification, Theory for the user.
    16. 16)
      • Gao, W., Li, Y., Liu, G., Zhang, T.: `An adaptive fuzzy smith control of time-varying processes with dominant and variable delay', IEEE Proc. American Control Conf., 2003, Denver, Colorado.
    17. 17)
      • Ghersin, A., Sánchez Peña, R.: `Transient shaping of LPV Systems (invited paper)', European Control Conf., 2001, Porto, Portugal.
    18. 18)
      • R.S. Sánchez Peña , M. Sznaier . (1998) Robust systems theory and application.
    19. 19)
    20. 20)
      • Bolea, Y., Blesa, J.: `Irrigation canal simulator (ICS)', Automatic Control Department, Technical University of Catalonia, Internal Report, 2000.
    21. 21)
    22. 22)
    23. 23)
      • Bianchi, F., Mantz, R.: `Control PID LPV gain scheduled robusto', XIX Congreso Argentino de Control Automático, AADECA, 2004.
    24. 24)
    25. 25)
    26. 26)
      • Argelaguet, R., Pons, M., Aguilar, J., Quevedo, J.: `A new tuning of PID controllers based on LQR optimization', PID'00, Past, present and future of PID Control, IFAC Workshop on Digital Control, 2000, ESAII Department, UPC, Terrassa.
    27. 27)
    28. 28)
      • Bolea, Y., Puig, V., Blesa, J., Gómez, M., Rodellar, J.: `An LPV model for canal control', Proc. Tenth IEEE Int. Conf. on Methods and Models in Automation and Robotics (MMAR), 2004, Miedzyzdroje, Poland.
    29. 29)
    30. 30)
      • A. Datta , M. Ho , S.P. Bhattacharya . (2000) Structure and synthesis of PID controllers.
    31. 31)
    32. 32)
    33. 33)
      • J.C. Doyle , B.A. Francis , A.R. Tannenbaum . (1992) Feedback control theory.
    34. 34)
    35. 35)
    36. 36)
    37. 37)
    38. 38)
    39. 39)
      • Bamieh, B., Giarré, L., Raimondi, T., Bauso, D., Lodato, M., Rosa, D.: `LPV model identification for the stall and surge control of jet engine', 15thIFAC Symp. on Automatic Control in Aerospace, 2001, Forli.
    40. 40)
    41. 41)
    42. 42)
    43. 43)
    44. 44)
    45. 45)
      • P. Gahinet , A. Nemirosvski , A. Laub , M. Chilali . (1995) The LMI control toolbox.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2010.0088
Loading

Related content

content/journals/10.1049/iet-cta.2010.0088
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address