http://iet.metastore.ingenta.com
1887

Adaptive tracking control for a class of wheeled mobile robots with unknown skidding and slipping

Adaptive tracking control for a class of wheeled mobile robots with unknown skidding and slipping

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study presents an adaptive tracking control approach for trajectory tracking of wheeled mobile robots with torque saturation in the presence of unknown skidding and slipping. The robot kinematics and dynamics are induced from the perturbed non-holonomic constraints. The adaptive control system using the kinematics transformed in polar coordinates is developed to compensate unknown skidding and slipping at the dynamic level of mobile robots with the input saturation. All signals of the controlled closed-loop system are uniformly bounded and the point tracking errors converge to an adjustable neighbourhood of the origin regardless of large initial tracking errors, input saturation and unknown skidding and slipping. Simulation results are provided to demonstrate the performance and stability of the proposed control scheme.

References

    1. 1)
      • J.M. Yang , J.H. Kim . Sliding mode control of trajectory tracking of nonholonomic wheeled mobile robots. IEEE Trans. Robot. Autom. , 3 , 578 - 587
    2. 2)
      • D. Chwa . Sliding-mode control of nonholonomic wheeled mobile robots in polar coordinates. IEEE Trans. Control Syst. Technol. , 4 , 637 - 644
    3. 3)
      • B.S. Park , S.J. Yoo , J.B. Park , Y.H. Choi . Adaptive neural sliding mode control of nonholonomic wheeled mobile robots with model uncertainty. IEEE Trans. Control Syst. Technol. , 1 , 207 - 214
    4. 4)
      • T. Fukao , H. Nakagawa , N. Adachi . Adaptive tracking control of a nonholonomic mobile robot. IEEE Trans. Robot. Autom. , 5 , 609 - 615
    5. 5)
      • W.E. Dixon , M.S. Queiroz , D.M. Dawson , T.J. Flynn . Adaptive tracking and regulation of a wheeled mobile robot with controller/update law modularity. IEEE Trans. Control Syst. Technol. , 1 , 138 - 147
    6. 6)
      • W.J. Dong , K.D. Kuhnert . Robust adaptive control of nonholonomic mobile robot with parameter and nonparameter uncertainties. IEEE Trans. Robot. , 2 , 261 - 266
    7. 7)
      • K.D. Do , Z.P. Jiang , J. Pan . Simultaneous tracking and stabilization of mobile robots: an adaptive approach. IEEE Trans. Autom. Control , 7 , 1147 - 1152
    8. 8)
      • Z.P. Jiang , H. Nijmeijer . Tracking control of mobile robots: a case study in backstepping. Automatica , 7 , 1393 - 1399
    9. 9)
      • W. Dong , W. Huo , S.K. Tso , W.L. Xu . Tracking control of uncertain dynamic nonholonomic system and its application to wheeled mobile robots. IEEE Trans. Robot. Autom. , 6 , 870 - 874
    10. 10)
      • T.C. Lee , K.T. Song , C.H. Lee , C.C. Teng . Tracking control of unicycle-modeled mobile robots using a saturation feedback controller. IEEE Trans. Control Syst. Technol. , 2 , 305 - 318
    11. 11)
      • C.D. Sousa , E.M. Hemerly , R.K.H. Galvão . Adaptive control for mobile robot using wavelet networks. IEEE Trans. Syst. Man Cybern. , 4 , 493 - 504
    12. 12)
      • R. Fierro , F.L. Lewis . Control of a nonholonomic mobile robot using neural networks. IEEE Trans. Neural Netw. , 4 , 589 - 600
    13. 13)
      • S.J. Yoo , Y.H. Choi , J.B. Park . Generalised predictive control based on self-recurrent wavelet neural network for stabel path tracking of mobile robots: adaptive learning rates approach. IEEE Trans. Circuit Syst. I, Regul. Pap. , 6 , 1381 - 1394
    14. 14)
      • T. Das , I.N. Kar . Design and implementation of an adaptive fuzzy logic-based controller for wheeled mobile robots. IEEE Trans. Control Syst. Technol. , 3 , 501 - 510
    15. 15)
      • C.L. Hwang , L.J. Chang , Y.S. Yu . Network-based fuzzy decentralized sliding-mode control for car-like mobile robots. IEEE Trans. Neural Netw. , 1 , 574 - 585
    16. 16)
      • Corradini, M.L., Leo, T., Orlando, G.: `Robust stabilisation of a mobile robot violating the nonholonomic constraint via quasi-sliding modes', Proc. American Control Conf., 1999, p. 3935–3939.
    17. 17)
      • Wang, Z.P., Ge, S.S., Lee, T.H.: `Adaptive neural network control of a wheeled mobile robot violating the pure nonholonomic constraint', Proc. IEEE Int. Conf. on Decision and Control, 2004, p. 5198–5203.
    18. 18)
      • D. Wang , C.B. Low . Modeling and analysis of skidding and slipping in wheeled mobile robots: control design perspective. IEEE Trans. Robot. , 3 , 676 - 687
    19. 19)
      • C.B. Low , D. Wang . GPS-based path following control for a car-like wheeled mobile robot with skidding and slipping. IEEE Trans. Control Syst. Technol. , 2 , 340 - 347
    20. 20)
      • C.B. Low , D. Wang . GPS-based tracking control for a car-like wheeled mobile robot with skidding and slipping. IEEE Trans. Mechatronics , 4 , 480 - 484
    21. 21)
      • P.A. Ioannou , P.V. Kokotovic . (1983) Adaptive systems with reduced models.
    22. 22)
      • K.S. Narendra , A.M. Annaswamy . A new adaptive law for robust adaptation without persistent excitation. IEEE Trans. Autom. Control , 2 , 134 - 145
    23. 23)
      • L.X. Wang . (1997) A course in fuzzy systems and control.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2010.0026
Loading

Related content

content/journals/10.1049/iet-cta.2010.0026
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address