http://iet.metastore.ingenta.com
1887

Adaptive recursive M-robust system parameter identification using the QQ-plot approach

Adaptive recursive M-robust system parameter identification using the QQ-plot approach

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A new adaptive algorithm for the robust estimation of parameters of linear dynamic discrete-time systems in the presence of non-Gaussian impulsive noise within a measurement sequence is proposed in this study. Starting from the theory of robust estimation, a simple, adaptive, practically applicable robust approximate maximum likelihood algorithm is derived that, in the cases of contaminated normal distribution of measurement noise, demonstrates a high level of efficiency. The QQ-plot technique, combined with data cleaning based on the robustified winsorisation technique, is used as a framework for the classification of sorted data into the class of regular normally distributed data and the class of irregular data belonging to the contaminating distribution with a variance that is much greater than nominal. The link between the QQ-plot technique and a specific linear regression is established, so that the estimation of statistical parameters of the contaminated measurement distribution is performed using the least-squares technique. Then, the suboptimal maximum likelihood criterion is defined, and the system parameter estimation problem is solved robustly, using the proposed recursive robust parameter estimation scheme. Simulation results illustrate the discussion and show the efficiency of the proposed adaptive recursive parameter estimation algorithm in the presence of glint spikes or outliers.

References

    1. 1)
      • L. Ljung . (1987) System identification, theory for the user.
    2. 2)
      • P.J. van den Bosch , A.C. van der Klauw . (1994) Modeling, identification and simulation of dynamical systems.
    3. 3)
      • M. Verhagen , V. Verdult . (2007) Filtering and system identification: a least squares approach.
    4. 4)
      • R. Pintelon , J. Schoukens . (2001) System identification: a frequency domain approach.
    5. 5)
      • F.V.D. Heijden , R.P.W. Duin , D.d. Ridder , D.M.J. Tax . (2004) Classification, parameter estimation and state estimation.
    6. 6)
      • L. Ljung , T. Soderstrom . (1983) Theory and practice of recursive identification.
    7. 7)
      • H. Li , H.V. Poor . Performance analysis of semiblind channel estimation in long-code DS-CDMA systems. IEEE Trans. Signal Process. , 54 , 3383 - 3399
    8. 8)
      • H.L. Van Trees . (1971) Detection, estimation, and modulation theory.
    9. 9)
    10. 10)
    11. 11)
      • Y.Z. Tsypkin . (1984) Foundations of informational identification theory.
    12. 12)
    13. 13)
    14. 14)
    15. 15)
      • W.N. Venables , B.D. Ripely . (2002) Modern applied statistics with S.
    16. 16)
      • P.J. Huber . (1981) Robust statistics.
    17. 17)
      • V.D. Barnet , T. Lewis . (1978) Outliers in stohastic data.
    18. 18)
    19. 19)
    20. 20)
      • S.X. Ding . (2008) Model-based fault diagnosis techniques.
    21. 21)
    22. 22)
    23. 23)
      • C.G. Goodwin , K.S. Sin . (1984) Adaptive filtering, prediction and control.
    24. 24)
      • C.F.N. Cowan , P.M. Grant . (1985) Adaptive filters.
    25. 25)
      • R. Gnanadesikan . (1977) Methods for statistical data analysis of multivariable observations.
    26. 26)
    27. 27)
      • K. Fukunaga . (1991) Introduction to statistical pattern recognition.
    28. 28)
      • B.D. Kovacevic , Z.M. Djurovic . (2008) Fundamentals of stochastic signals, systems and estimation theory with worked examples.
    29. 29)
    30. 30)
      • M. Barkat . (2005) Signal detection and estimation.
    31. 31)
      • E. Kreyszig . (2006) Advanced engineering mathematics.
    32. 32)
      • A. Papoulis . (1991) Probability, random variables and stochastic processes.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2009.0647
Loading

Related content

content/journals/10.1049/iet-cta.2009.0647
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address