Model based on the reinitialised partial moments for initialising output-error identification methods

Access Full Text

Model based on the reinitialised partial moments for initialising output-error identification methods

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The present study addresses the initialisation problem of output-error (OE) identification methods. The challenge is to find a suitable initialization, which brings about a convergence towards the global optimum. A common way to initialise OE methods is to use the ARX model, but it must be used cautiously. The purpose of this study is to describe an alternative method based on the reinitialised partial moment (the RPM model) and to compare this approach with the ARX model by analysing the bias. The RPM model property is an implicit embedded filter that substitutes the explicit data filter required by the ARX model.

Inspec keywords: filtering theory; identification

Other keywords: ARX model; initialisation problem; an implicit embedded filter; output-error identification methods; reinitialised partial moments; explicit data filter

Subjects: Signal processing theory; Simulation, modelling and identification

References

    1. 1)
      • Trigeassou, J.C.: `Contribution à l'extension de la méthode des moments en automatique. Application à l'identification des systèmes linéaires', 1987, Thèse d'Etat, Université de Poitiers, France.
    2. 2)
      • S. Kirkpatrick , C.D. Gelatt , M.P. Vecchi . Optimization by simulated annealing. Science , 671 - 680
    3. 3)
      • I.D. Landau . (1979) Adaptive control: the model reference approach control and systems theory.
    4. 4)
      • J.P. Da Cunha , G. Champenois , J.D. Gabano . Comparison of parameter estimation algorithms for continuous time models applied to D.C. motor thermal supervision. Electr. Mach. Power Syst. , 8 , 839 - 853
    5. 5)
      • Young, P.: `The refined instrumental variable method: unified estimation of discrete and continuous-time transfer function models', Journées Identification et Modélisation Expérimentale, 2006, Poitiers, France.
    6. 6)
      • L. Ljung , T. Soderstrom . (1983) Theory and practice of recursive identification.
    7. 7)
      • Ljung, L.: `Initialisation aspects for subspace and output-error identification methods', European Control Conf., 2003, Cambridge, UK.
    8. 8)
      • Tohme, E., Ouvrard, R., Poinot, T., Trigeassou, J.C., Abche, A.: `Initialization of output-error identification methods – comparison between ARX and RPM models', 15thIFAC Symp. on System Identification, 2009, Saint-Malo, France, p. 302–307.
    9. 9)
      • T. Wigren . Recursive prediction error identification and scaling of non-linear state space models using a restricted black box parameterization. Automatica , 159 - 168
    10. 10)
      • Djamai, M., Tohme, E., Ouvrard, R., Bachir, S.: `Continuous-time model identification using reinitialized partial moments – application to power amplifier modeling', 14thIFAC Symp. on System Identification, 2006, Newcastle, Australia, p. 1270–1275.
    11. 11)
      • J. Richalet , A. Rault , R. Pouliquen . (1971) Identification des processus par la méthode du modèle.
    12. 12)
      • Rao, G.P., Garnier, H.: `Numerical illustrations of the relevance of direct continuous-time model identification', Proc. 15th IFAC World Congress, 2002, Barcelona, Spain.
    13. 13)
      • M. Fliess , H. Sira-Ramírez . An algebraic framework for linear identification. ESAIM Control Optimization Calc. Var. , 151 - 168
    14. 14)
      • M. Fliess , H. Sira-Ramírez . Reconstructeur d'état. C. R. Acad. Sci. Paris
    15. 15)
      • Coirault, P., Trigeassou, J.C., Gaubert, J.P., Champenois, G.: `Parameter estimation of an induction machine using reinitialized partial moments', IEEE Conf. on Control Applications, 1995, p. 979–984.
    16. 16)
      • L. Ljung . (1999) System identification – theory for the user.
    17. 17)
      • E. Tohme . (2008) Initialization of output error identification algorithms.
    18. 18)
      • G.P. Rao , H. Garnier . Identification of continuous-time systems: direct or indirect?. Syst. Sci. , 25 - 50
    19. 19)
      • J.L. Maryak , D.C. Chin . Global random optimization by simultaneous perturbation stochastic approximation. IEEE Trans. Autom. Control , 780 - 783
    20. 20)
      • G.J. Gray , D.J. Murray-Smith , Y. Li , K.C. Sharman , T. Weinbrenner . Nonlinear model structure identification using genetic programming. Control Eng. Pract. , 11 , 1341 - 1352
    21. 21)
      • M. Fliess , H. Sira-Ramírez . (2008) Closed-loop parametric identification for continuous-time linear systems via new algebraic techniques’, in ‘Identification of continuous-time models from sampled data.
    22. 22)
      • Mercère, G., Ouvrard, R., Gilson, M., Garnier, H.: `Subspace based methods for continuous-time model identification of MIMO systems from filtered sampled data', European Control Conf., 2007, Kos, Greece.
    23. 23)
      • B. Wahlberg , L. Ljung . Design variables for bias distribution in transfer function estimation. IEEE Trans. Autom. Control , 134 - 144
    24. 24)
      • Tohme, E., Ouvrard, R., Abche, A., Trigeassou, J.C., Poinot, T., Mercere, G.: `A methodology to enhance the convergence of output error identification algorithms', European Control Conf., 2007, Kos, Greece.
    25. 25)
      • K. Steiglitz , L. McBride . A technique for the identification of linear systems. IEEE Trans. Autom. Control , 461 - 464
    26. 26)
      • D. Himmelblau . (1972) Applied nonlinear programming.
    27. 27)
      • I.D. Landau . Unbiased recursive identification using model reference adaptive techniques. IEEE Trans. Autom. Control , 2 , 194 - 202
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2009.0644
Loading

Related content

content/journals/10.1049/iet-cta.2009.0644
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading