http://iet.metastore.ingenta.com
1887

Path following of a class of non-holonomic mobile robot with underactuated vehicle body

Path following of a class of non-holonomic mobile robot with underactuated vehicle body

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A new dynamic model for a class of two-wheeled mobile robot (2WMR), whose mass centre locates below its wheel axis, is presented. The dynamic model considered as the motion of an underactuated vehicle body can represent the time-varying horizontal distance of the mass centre with respect to the configuration centre. This model can describe the dynamic behaviours of the robot more accurately. By the computed torque approach, a sliding mode controller based on the adaptive gain to overcome the disturbances of the system is proposed. Integrating with the velocity controller, the whole control system is made up of two closed-loop structures. The control algorithm efficiency is confirmed through simulation in the MATLAB environment.

References

    1. 1)
      • Hoa, N., John, M., Katherine, M.: `Segway robotic mobility platform', Proc. Int. Society for Optical Engineering, 2004, p. 207–220.
    2. 2)
      • F. Grasser , A.D. Arrigo , S. Colombi . JOE: a mobile, inverted pendulum. IEEE Trans. Ind. Electron. , 1 , 107 - 114
    3. 3)
      • T.M. Ching , H.J. Sheng , H.F. Rung . Actuator fault and abnormal operation diagnoses for auto-balancing two-wheeled cart control. Mechatronics , 2 , 647 - 655
    4. 4)
      • O. Patrick , S. Alessio , A.H. Abdul , A. Jorge . Experimental validation of an underactuated two-wheeled mobile robot. IEEE/ASME Trans. Mechatron. , 2 , 252 - 257
    5. 5)
      • S. Alessio , A. Jorge . A new family of two-wheeled mobile robots: Modeling and controllability. IEEE Trans. Robot. , 1 , 169 - 173
    6. 6)
      • Tao, J.G., Deng, Z.Q., Bi, Z.F.: `Characteristic analysis of a two-wheeled robotic rover with anti-overturn ability and combinability', Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2006, p. 5292–5296.
    7. 7)
      • J.T. Huang . Adaptive tracking control of high-order non-holonomic mobile robot systems. IET Control Theory Appl. , 6 , 681 - 690
    8. 8)
      • D.W. Wang , G.Y. Xu . Full-state tracking and internal dynamics of nonholonomic wheeled mobile robots. IEEE/ASME Trans. Mechatron. , 2 , 203 - 214
    9. 9)
      • P. Kaustubh , F. Jaume , S. Agrawal . Velocity and position control of a wheeled inverted pendulum by partial feedback linearization. IEEE Trans. Robot. , 3 , 505 - 513
    10. 10)
      • Alessio, S., Svetlana, O., Jorge, A.: `The development of quasiholonomic wheeled robots', Proc. IEEE Int. Conf. on Robotics and Automation, 2002, p. 3514–3520.
    11. 11)
      • W. Peng , Z. Lin , J. Su . Computed torque control-based composite nonlinear feedback controller for robot manipulators with bounded torques. IET Control Theory Appl. , 6 , 701 - 711
    12. 12)
      • T. Fukao , H. Nakagawa , N. Adachi . Adaptive tracking control of a nonholonomic mobile robot. IEEE Trans. Robot. Autom. , 5 , 609 - 615
    13. 13)
      • F.M. Raimondi , M. Melluso . Fuzzy adaptive EKF motion control for non-holonomic and underactuated cars with parametric and non-parametric uncertainties. IET Control Theory Appl. , 5 , 1311 - 1321
    14. 14)
      • R. Fierro , L. Lewis . Control of a nonholonomic mobile robot: backstepping kinematics into dynamics. J. Robot. Syst. , 3 , 149 - 163
    15. 15)
      • W.J. Dong , K.D. Kuhnert . Robust adaptive control of nonholonomic mobile robot with parameter and nonparameter uncertainties. IEEE Trans. Robot. , 2 , 261 - 266
    16. 16)
      • Kanayama, Y., Kimura, Y., Miyazaki, F.: `A stable tracking control method for an autonomous mobile robot', Proc. IEEE Conf. on Robotics and Automation, 1990, p. 384–389.
    17. 17)
      • Alemayehu, A., Bandyopadhyay, B., Janardhanan, S.: `Digital redesign of sliding mode control algorithms using saturation function: state and multirate output feedback approach', Proc. 45th IEEE Conf. on Decision and Control, 2006, p. 1594–1598.
    18. 18)
      • R. Fierro , F.L. Lewis . Control of a nonholonomic mobile robot using neural networks. IEEE Trans. Neural Netw. , 4 , 589 - 600
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2009.0617
Loading

Related content

content/journals/10.1049/iet-cta.2009.0617
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address