Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Mixed ℋ2/ℋ approach to fault-tolerant controller design for Lipschitz non-linear systems

Mixed ℋ2/ℋ approach to fault-tolerant controller design for Lipschitz non-linear systems

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study is concerned with the design of fault-tolerant controller for Lipschitz non-linear continuous-time systems in the presence of disturbances and noises. The simultaneous estimation of actuator faults and states is formulated as a mixed ℋ2/ℋ control problem. The fault-tolerant controller is then designed to compensate for the effect of the faults by stabilising the closed-loop system and guaranteeing a prescribed performance level in the presence of disturbances. This design problem is reduced to a linear matrix inequality feasibility problem and a constructive algorithm is proposed. Two examples are presented to demonstrate the performance of the proposed fault-tolerant control scheme.

References

    1. 1)
    2. 2)
      • M. Blanke , M. Kinnaert , J. Lunze , M. Straoswiecki . (2006) Diagnosis and fault tolerant control.
    3. 3)
    4. 4)
      • C.W. Scherer , P. Gahinet , M. Chilali . Multi-objective output feedback control. IEEE Trans. Autom. Control , 2 , 138 - 149
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
      • Blanke, M., Staroswieki, M., Wu, N.E.: `Concepts and methods in fault tolerant control', Proc. American Control Conf., 2001, Arlington, VA, p. 2606–2620.
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
    24. 24)
      • L. El Ghaoui , R. Nikoukhah , F. Delebecque , J.L. Commeau . (1998) LMITOOL-2.0 package: an interface to solve LMI problems.
    25. 25)
    26. 26)
    27. 27)
    28. 28)
    29. 29)
    30. 30)
    31. 31)
    32. 32)
    33. 33)
    34. 34)
      • T. Steffen . (2005) Control reconfiguration of dynamical systems.
    35. 35)
      • Y. Chen , R.J. Patton . (1999) Robust model-based fault diagnosis for dynamic systems..
    36. 36)
    37. 37)
    38. 38)
      • P. Gahinet , A. Nemirovski , A. Laub , M. Chilali . (1995) LMI control toolbox.
    39. 39)
    40. 40)
      • K. Zhou , J. Doyle . (1998) Essential of robust control.
    41. 41)
    42. 42)
    43. 43)
      • Patton, R.J.: `Fault tolerant control: the 1997 situation', Proc. Third IFAC Symp. on Fault Detection, Supervision and Safety for Technical Processes, 1997, p. 1033–1055.
    44. 44)
    45. 45)
      • P. Cui , Z. Weng , R. Patton . Novel active fault-tolerant control scheme and its application to a double inverted pendulum system. J. Syst. Eng. Electron. , 1 , 134 - 140
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2009.0556
Loading

Related content

content/journals/10.1049/iet-cta.2009.0556
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address