http://iet.metastore.ingenta.com
1887

Tracking control of pneumatic artificial muscle actuators based on sliding mode and non-linear disturbance observer

Tracking control of pneumatic artificial muscle actuators based on sliding mode and non-linear disturbance observer

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The dynamic properties and non-linear control of the pneumatic muscle actuator (PMA) were investigated in this study for use in a specially designed hand rehabilitation device. The phenomenological model of PMA was established in the lower pressure range applicable for hand rehabilitation. The experimental results show that PMA's characteristics can be approximated by piecewise functions. In order to improve the performance and robustness of control for accurate trajectory tracking, a sliding mode control based on non-linear disturbance observer (SMCBNDO) was designed. The simulation and experimental results demonstrated that the model and the sliding mode control achieved the desired performance in tracking a desired trajectory within guaranteed accuracy. The work indicates that the model and the non-linear control proposed in this study can be applied in PMA-driven hand function rehabilitation devices requiring lower pressures.

References

    1. 1)
      • T. Noritsugu , T. Tanaka . Application of rubber artificial muscle manipulator as a rehabilitation robot. IEEE-ASME Trans. Mech. , 4 , 259 - 267
    2. 2)
      • He, J.P., Koeneman, E.J., Schultz, R.S.: `RUPERT: a device for robotic upper extremity repetitive therapy', Proc. 27th Annual Int. Conf. IEEE EMBS, September 2005, Shanghai, China, p. 6844–6847.
    3. 3)
      • Koeneman, E.J., Schultz, R.S., Wolf, S.L., Herring, D.E., Koeneman, J.B.: `A pneumatic muscle hand therapy device', Proc. 26th Annual Int. Conf. IEEE EMBS, September 2004, San Francisco, CA, USA, p. 2711–2713.
    4. 4)
      • Xing, K.X., Xu, Q., He, J.P., Wang, Y.J., Liu, Z.W., Huang, X.L.: `A wearable device for repetitive hand therapy', Proc. Second Biennial IEEE/RAS-EMBS Int. Conf. Biomedical Robotics and Biomechatronics, October 2008, Scottsdale, AZ, USA, p. 919–923.
    5. 5)
      • D.G. Caldwell , G.A. Medrano-Cerda , M. Goodwin . Control of pneumatic muscle actuators. IEEE Control Syst. Mag. , 1 , 40 - 48
    6. 6)
      • H.F. Schulte . (1961) The characteristics of the Mckibben artificial muscle.
    7. 7)
      • D.G. Caldwell , N. Tsagarakis , G.A. Medrano-Cerda . Bio-mimetic actuators: polymeric pseudo muscular actuators and pneumatic muscle actuators for biological emulation. Mechatronics , 499 - 530
    8. 8)
      • C.P. Chou , B. Hannaford . Measurement and modeling of McKibben pneumatic artificial muscles. IEEE Trans. Robot. Autom. , 1 , 90 - 102
    9. 9)
      • Chou, C.P., Hannaford, B.: `Static and dynamic characteristics of McKibben pneumatic artificial muscles', IEEE Int. Conf. on Robotics and Automation, May 1994, San Diego, USA, p. 281–286.
    10. 10)
      • B. Tondu , P. Lopez . The McKibben muscle and its use in actuating robot-arms showing similarities with human arm behavior. Ind. Robot. , 6 , 432 - 439
    11. 11)
      • G.K. Klute , B. Hannaford . Accounting for elastic energy storage in McKibben artificial muscle actuators. J. Dyn. Syst. Meas. Control , 2 , 386 - 388
    12. 12)
      • Colbrunn, R.W., Nelson, G.M., Quinn, R.D.: `Modeling of braiding pneumatic actuators for robotic control', Proc. 2001 IEEE/RSJ Int. Conf. Intelligent Robots and Systems, 29 October–3 November 2001, Maui, Hawaii, USA, p. 1964–1970.
    13. 13)
      • Repperger, D.W., Johnson, K.R., Phillips, C.A.: `Nonlinear feedback controller design of a pneumatic muscle actuator system', Proc. American Control Conf., June 1999, San Diego, CA, p. 1525–1529.
    14. 14)
      • D.B. Reynolds , D.W. Repperger , C.A. Phillips , G. Bandry . Dynamic characteristics of pneumatic muscle. Ann. Biomed. Eng. , 3 , 310 - 317
    15. 15)
      • Kawashima, K., Sasaki, T., Ohkubo, A., Miyata, T., Kagawa, T.: `Application of robot arm using fiber knitted type pneumatic artificial rubber muscles', Proc. IEEE Int. Conf. Robotics and Automation, April 2004, New Orleans, LA, p. 4937–4942.
    16. 16)
      • Caldwell, D.G., Medrano-Cerda, G.A., Goodwin, M.: `Characteristics and adaptive control of pneumatic muscle actuators for a robotic elbow', Proc. IEEE Int. Conf. on Robotics and Automation, May 1994, San Diego, USA, p. 3558–3563.
    17. 17)
      • Medrano-Cerda, G.A., Bowler, C.J., Caldwell, D.G.: `Adaptive position control of antagonistic pneumatic muscle actuators', Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, August 1995, Pittsburgh, USA, p. 378–383.
    18. 18)
      • Djouadi, S.M., Repperger, D.W., Berlin, J.E.: `Gain-scheduling H∞ control of a pneumatic muscle using wireless MEMS sensors', Proc. 44th IEEE's Midwest Symp. on Circuits and Systems, 14–17 August 2001, Dayton, OH, New York, USA, p. 734–737.
    19. 19)
      • Carbonell, P., Jiang, Z.P., Repperger, D.W.: `Nonlinear control of a pneumatic muscle actuator: backstepping vs. sliding-mode', Proc. 2001 IEEE Int. Conf. on Control Applications, Bruno Siciliano, September 2001, Mexico City, Mexico, p. 167–172.
    20. 20)
      • Carbonell, P., Jiang, Z.P., Repperger, D.W.: `A fuzzy backstepping controller for a pneumatic muscle actuator system', Proc. 2001 IEEE Int. Symp. Intelligent Control, 5–7 September 2001, Mexico City, Mexico, p. 353–358.
    21. 21)
      • Repperger, D.W., Johnson, K.R., Philips, C.A.: `A VSC position tracking system involving a large scale pneumatic muscle actuator', Proc. 37th IEEE Conf. Decision & Control, December 1998, Tampa, FL, USA, p. 4302–4307.
    22. 22)
      • T. Hesselroth , K. Sarkar , P. Patrick van der Smagt , K. Schulten . Neural network control of a pneumatic robot arm. IEEE Trans. Syst. Man Cybernet. , 1 , 28 - 38
    23. 23)
      • Cai, D., Yamaura, H.: `A robust controller for manipulator driven by artificial muscle actuator', Proc. IEEE Conf. Control Application, September 1996, Dearborn, USA, p. 540–545.
    24. 24)
      • Osuka, K., Kimura, T., Ono, T.: `H∞ control of a certain nonlinear actuator', Proc. 29th Conf. Decision and Control, December 1990, Honolulu, Hawaii, p. 370–371.
    25. 25)
      • Xing, K.X., Huang, J., Xu, Q., Wang, Y.J.: `Design of a wearable rehabilitation robotic hand actuated by pneumatic artificial muscles', Proc. Seventh Asian Control Conf., August 2009, Hong Kong, China, p. 740–744.
    26. 26)
      • Wu, J., Huang, J., Wang, Y.J., Xing, K.X., Xu, Q.: `Fuzzy PID control of a wearable rehabilitation robotic hand driven by pneumatic muscles', Proc. 20th IEEE Int. Symp. on Micro-NanoMehatronics and Human Science, November 2009, Nagoya, Japan, p. 408–413.
    27. 27)
      • J.J.E. Slotine , W. Li . (1991) Applied nonlinear control.
    28. 28)
      • J. Cheng , J. Yi , D. Zhao . Design of a sliding mode controller for trajectory tracking problem of marine vessels. IET Control Theory Appl. , 1 , 233 - 237
    29. 29)
      • J.H. Lilly , L. Yang . Sliding mode tracking for pneumatic muscle actuators in opposing pair configuration. IEEE Trans. Control Syst. Technol. , 4 , 550 - 558
    30. 30)
      • Y. Niu , D.W.C. Ho . Design of sliding mode control for nonlinear stochastic systems subject to actuator nonlinearity. IEE Proc. Control Theory Appl. , 6 , 737 - 744
    31. 31)
      • A.J. Koshkouei , K.J. Burnham , A.S.I. Zinober . Dynamic sliding mode control design. IEE Proc. Control Theory Appl. , 4 , 392 - 396
    32. 32)
      • Hespanha, J.P.: `Stability of switched systems with average dwell-time', Proc. IEEE Conf. Decision and Control, December 1999, Phoenix, USA, p. 2655–2660.
    33. 33)
      • W.-H. Chen . Disturbance observer based control for nonlinear systems. IEEE/ASME Trans. Mech. , 4 , 706 - 710
    34. 34)
      • F.J. Lin , P.H. Chou , Y.S. Kung . Robust fuzzy neural network controller with nonlinear disturbance observer for two-axis motion control system. IET Control Theory Appl. , 2 , 151 - 167
    35. 35)
      • K.C. Veluvolu , Y.C. Soh , W. Cao . Robust observer with sliding mode estimation for nonlinear uncertain systems. IET Control Theory Appl. , 5 , 1533 - 1540
    36. 36)
      • J.T. Moura , N. Olgac . Robust Lyapunov control with perturbation estimation. IEE Proc. Control Theory Appl. , 3 , 307 - 315
    37. 37)
      • H. Elmali , N. Olgac . Satellite attitude control via sliding mode with perturbation estimation. IEE Proc. Control Theory Appl. , 3 , 276 - 282
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2009.0555
Loading

Related content

content/journals/10.1049/iet-cta.2009.0555
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address