http://iet.metastore.ingenta.com
1887

Adaptive stabilisation for a class of non-linear state time-varying delay systems with unknown time-delay bound

Adaptive stabilisation for a class of non-linear state time-varying delay systems with unknown time-delay bound

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, the authors address the problem of adaptive backstepping control for a class of single-input and single-output (SISO) non-linear time-delay systems in triangular structure. Both the parameters of the system to be controlled and the upper bounds of the time delays and their derivatives are assumed to be unknown. A direct adaptive controller for this class of uncertain non-linear systems is proposed. The assumption on delay-related non-linearities is further relaxed. An appropriate Lyapunov–Krasovskii functional is constructed, and the backstepping technique is used. It is shown that all the closed-loop signals are bounded, while the plant states converge to zero asymptotically. A simulation example is provided to demonstrate the design procedure and performance of the proposed method.

References

    1. 1)
      • K. Gu , V.L. Kharitonov , J. Chen . (2003) Stability of time-delay systems.
    2. 2)
      • S. Xu , J. Lam . On equivalence and efficiency of certain stability criteria for time-delay systems. IEEE Trans. Autom. Control , 1 , 95 - 101
    3. 3)
      • S. Xu , J. Lam , M. Zhong . New exponential estimates for time-delay systems. IEEE Trans. Autom. Control , 9 , 1501 - 1505
    4. 4)
      • H. Gao , J. Lam , C. Wang , Y. Wang . Delay-dependent output-feedback stablization of discrete-time systems with time-varying state delay. IEE Proc. Control Theory Appl. , 6 , 691 - 698
    5. 5)
      • M.S. Mahmoud . Adaptive control of a class of time-delay systems with uncertain parameters. Int. J. Control , 5 , 937 - 950
    6. 6)
      • S. Oucheriah . Adaptive robust control of a class of dynamic delay systems with unknown uncertainty bounds. Int. J. Adapt. Control Signal Process. , 1 , 53 - 63
    7. 7)
      • H. Wu . Adaptive stabilizing state feedback controllers of uncertain dynamical systems with multiple time delays. IEEE Trans. Autom. Control , 9 , 1697 - 1701
    8. 8)
      • S. Xu , G. Feng . Further results on adaptive robust control of uncertain time-delay systems. IET Control Theory Appl. , 4 , 875 - 879
    9. 9)
      • D. Ye , G.-H. Yang . Adaptive reliable H∞ control for linear time-delay systems via memory state feedback. IET Control Theory Appl. , 3 , 713 - 721
    10. 10)
      • B. Mirkin , P.O. Gutman . Output feedback model reference adaptive control for multi-input-output plants with state delay. Syst. Control Lett. , 10 , 961 - 972
    11. 11)
      • B. Mirkin , P.O. Gutman . Adaptive output feedback tracking: the case of MIMO plants with unknown, time-varying state delay. Syst. Control Lett. , 1 , 62 - 68
    12. 12)
      • M. Jankovic . Control Lyapunov-Razumikhin functions and robust stabilization of time delay systems. IEEE Trans. Autom. Control , 7 , 1048 - 1060
    13. 13)
      • Jankovic, M.: `Stabilization of non-linear time delay systems with delay-independent feedback', Proc. America. Control Conf., June 2005, Portland, OR, p. 4253–4258.
    14. 14)
      • C. Hua , X. Guan , P. Shi . Robust backstepping control for a class of time delayed systems. IEEE Trans. Autom. Control , 6 , 894 - 899
    15. 15)
      • S. Zhou , G. Feng , S.K. Nguang . Comments on “Robust stabilization of a class of time-delay non-linear systems”. IEEE Trans. Autom. Control , 9 , 1586 - 1586
    16. 16)
      • C. Hua , X. Guan . Conmmments on “State feedback stabilization for a class of stochastic time-delay non-linear systems”. IEEE Trans. Autom. Control , 7 , 1216 - 1216
    17. 17)
      • X. Jiao , T. Shen . Adaptive feedback control of non-linear time-delay systems: the Lasalle–Razumikhin-based approach. IEEE Trans. Autom. Control , 11 , 1909 - 1913
    18. 18)
      • C. Hua , X. Guan , G. Feng . Robust stabilization for a class of time-delay systems with triangular structure. IET Control Theory Appl. , 4 , 875 - 879
    19. 19)
      • S. Ge , F. Hong , T.H. Lee . Adaptive neural network control of non-linear systems with unknown time delays. IEEE Trans. Autom. Control , 11 , 2004 - 2010
    20. 20)
      • S. Ge , F. Hong , T.H. Lee . Robust adaptive control of non-linear systems with unknown time delays. Automatica , 7 , 1181 - 1190
    21. 21)
      • C. Hua , X. Guan , P. Shi . Robust output feedback tracking control for time-delay non-linear systems using neural network. IEEE Trans. Neural Netw. , 2 , 495 - 505
    22. 22)
      • C. Hua , X. Guan . Robust output feedback stabilization for time-delay non-linear interconnected systems using neural network. IEEE Trans. Neural Netw. , 4 , 673 - 688
    23. 23)
      • M. Krstic , I. Kanellakopoulos , P.V. Kokotovic . (1995) Nonlinear and adaptive control design.
    24. 24)
      • P. Ioannou , J. Sun . (1996) Robust adaptive control.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2009.0414
Loading

Related content

content/journals/10.1049/iet-cta.2009.0414
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address