http://iet.metastore.ingenta.com
1887

Model matching control of multiple-input-delay systems

Model matching control of multiple-input-delay systems

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study considers the model matching problem for a class of multiple-input-delay systems whose inputs involve different delays. The reference model is chosen to be a diagonal delay transfer matrix. A model matching controller, which involves multiple integrals of past inputs over different delay intervals, is designed for the nominal systems. Then an adaptive control scheme is proposed for uncertain systems with parameter variation. The resulting scheme can guarantee global stability of the closed-loop systems and the convergence of tracking errors. A simulation example is included to illustrate the proposed scheme.

References

    1. 1)
      • O. Smith . Closer control of loops with dead time. Chem. Eng. Prog. , 5 , 217 - 219
    2. 2)
    3. 3)
    4. 4)
      • L. Dugard , E.I. Verriest . (1997) Stablility and control of time-delay systems.
    5. 5)
      • A. Korytowski , S. Fuksa , P. Grabowski , H. Gorecki . (1989) Analysis and synthesis of time delay systems.
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
      • Yildiz, Y., Annaswamy, A., Yanakiev, D., Kolmanovsky, I.: `Automotive powertrain control problems involving time delay: an adaptive control approach', ASME Dynamic Systems and Control Conf., October 2008, Ann Arbor, Michigan, USA.
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
      • Pietri, D.B., Krstic, M.: `Delay-adaptive full-state predicor feedback for systems with unknown long actuator delay', American Control Conf., June 2009, Hyatt Regency Riverfront, St. Louis, MO, USA, p. 4500–4505.
    20. 20)
    21. 21)
    22. 22)
      • W.A. Wolovich . (1974) Linear multivariable systems.
    23. 23)
      • J.C. Doyle , B.A. Francis , A.R. Tannenbaum . (1992) Feedback control theory.
    24. 24)
    25. 25)
    26. 26)
      • K. Ichikawa . (1985) Control system design based on exact model matching techniques.
    27. 27)
    28. 28)
      • Koumboulis, F.N., Kouvakas, N.D., Paraskevopoulos, P.N.: `Dynamic measurement output feedback controllers for exact model matching and disturbance rejection of general linear neutral time delay systems', 17thMediterranean Conf. on Control & Automation Makedonia Palace, June 2009, Thessaloniki, Greece, p. 1367–1372.
    29. 29)
      • Jia, Y., Lunze, J., Wolff, A.: `Application of robust multivariable control to a fluidized bed combustor for sewage sludge', Proc. 14th IFAC World Congress, 1999, Beijing, China, p. 301–306.
    30. 30)
    31. 31)
      • K.S. Narendra , A.M. Annaswamy . (1989) Stable adaptive systems.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2009.0404
Loading

Related content

content/journals/10.1049/iet-cta.2009.0404
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address