http://iet.metastore.ingenta.com
1887

H filtering for non-linear stochastic Markovian jump systems

H filtering for non-linear stochastic Markovian jump systems

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study deals with the H filtering problem for a class of non-linear stochastic Markovian jump systems (NSMJS) as to both accessible and non-accessible jumping parameters cases. For this class of systems with measurable Markovian jumping parameters, sufficient conditions are expressed for the non-linear stochastic H and mixed H2/H filtering design in terms of a set of N-, 2N-coupled Hamilton–Jacobi inequalities (HJIs), respectively. On the other hand, as to the non-accessible jumping parameters case, a fault-tolerant H filter is introduced for NSMJS with a jump detection and identification scheme, which is determined by a set of N×M-coupled HJIs. Finally, a numerical example is given to show the usefulness of the results derived.

References

    1. 1)
    2. 2)
      • Banavar, R.N., Speyer, J.L.: `A linear-quadratic game approach to estimation and smoothing', Proc. 1991 American Control Conf., 1991, p. 2818–2822.
    3. 3)
    4. 4)
    5. 5)
      • E. Gershon , U. Shaked , U. Yaesh . (2005) Control and estimation of state-multiplicative linear systems.
    6. 6)
      • I.R. Petersen , V. Ugrinovskii , A.V. Savkin . (2000) Robust control design using .
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
      • Lin, Z., Lin, Y.: `State-feedback ', Proc. 17th IFAC World Congress, 2008, p. 13486–13491.
    15. 15)
    16. 16)
      • V. Dragan , T. Morozan , A.M. Stoica . (2006) Mathematical methods in robust control of linear stochastic systems.
    17. 17)
      • M. Mariton . (1990) Jump linear systems in automatic control.
    18. 18)
    19. 19)
      • X. Mao , C. Yuan . (2006) Stochastic differential equations with Markovian switching.
    20. 20)
      • Z. Lin , W. Zhang , Y. Lin . Robust static output feedback control for stochastic hybrid systems. Int. J. Innov. Comput. Inf. Control , 9 , 2295 - 2304
    21. 21)
      • M.M. Mahmoud , J. Jiang , Y.M. Zhang . (2003) Active fault tolerant control systems: stochastic analysis and synthesis.
    22. 22)
    23. 23)
    24. 24)
    25. 25)
    26. 26)
      • S. Ross . (1996) Stochastic processes.
    27. 27)
    28. 28)
      • M. Abu-Khalaf , J. Huang , F.L. Lewis . (2006) Nonlinear .
    29. 29)
      • S.P. Banks . (1986) Mathematical theories of nonlinear systems.
    30. 30)
    31. 31)
    32. 32)
    33. 33)
      • Zhang, W., Feng, G., Li, Q.: `Robust ', Proc. Seventh World Congress on Intelligent Control and Automation (WCICA), 2008, p. 2212–2217.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2009.0393
Loading

Related content

content/journals/10.1049/iet-cta.2009.0393
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address