H design of rotor flux-oriented current-controlled induction motor drives: speed control, noise attenuation and stability robustness

Access Full Text

H design of rotor flux-oriented current-controlled induction motor drives: speed control, noise attenuation and stability robustness

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study deals with the design of H controllers for speed control of rotor flux-oriented current-controlled induction motors. The mixed sensitivity problem (robust stability and performance) is initially revisited, and is shown, based on practical experiments, that when the rotor time constant is the uncertain parameter, it is necessary to deploy conflicting weighting functions, therefore invaliding its application in the design of current-fed induction motors. Two other H problems are addressed: (i) a one-block problem for speed control with tracking and transient performance objectives; and (ii) a two-block problem for speed control with tracking/transient performance and noise attenuation objectives. An important part of H design is the model of the system to be controlled. In this study, the system composed of the inverter, estimator and induction motor will be modelled as a first-order system, and experiments for the identification of the gain and the time constant are proposed. It is also suggested how to properly correct an initial estimation of the rotor time constant in order to make the actual plant (inverter-induction motor) behave as a first-order linear system. The model accuracy and the efficiency of the H controllers are validated by experiments carried out in a real system.

Inspec keywords: electric current control; transient analysis; H∞ control; angular velocity control; linear systems; rotors; induction motor drives; robust control; machine vector control

Other keywords: induction motor drives; H control; current control; flux oriented control; rotor; transient performance; linear system; tracking; stability robustness; speed control; noise attenuation

Subjects: Stability in control theory; Drives; Optimal control; Asynchronous machines; Control of electric power systems; Current control; Velocity, acceleration and rotation control

References

    1. 1)
      • P.C. Krause , O. Wasynczuk , S.D. Sudhoff . (2002) Analysis of electrical machinery and drive systems.
    2. 2)
      • F. Blaschke . The principle of field orientation applied to the new transvector closed-loop control system for rotating field machines. Siemens-Rev. , 217 - 220
    3. 3)
      • L.H. Keel , S.P. Bhattacharyya . Robust, fragile, or optimal?. IEEE Trans. Autom. Control , 1098 - 1105
    4. 4)
      • Y.T. Kao , C.H. Liu . Analysis and design of microprocessed-based vector-controlled induction motor drives. IEEE Trans. Ind. Electron. , 46 - 54
    5. 5)
      • E. Laroche , Y. Bonnassieux , H. Abou-Kandil , J.P. Louis . Controller design and robustness analysis for induction machine-based positioning system. Control Eng. Pract. , 757 - 767
    6. 6)
      • C.P. Bottura , M.F.S. Neto , S.A.A. Filho . Robust speed control of an induction motor: an H∞ control theory approach with field orientation and μ-analysis. IEEE Trans. Power Electron. , 908 - 915
    7. 7)
      • J.C. Doyle , B.A. Francis , A.R. Tannenbaum . (1992) Feedback control theory.
    8. 8)
      • J.S. Garcia , J.C. Basilio . Computation of reduced-order models of multivariable systems by balanced truncation. Int. J. Syst. Sci. , 847 - 854
    9. 9)
      • S.J. Chapman . (1991) Electric machinery fundamentals.
    10. 10)
      • D. Kim , I. Ha , M. Ko . Control of induction motors via feedbback linearisation with input–output decoupling. Int. J. Control , 863 - 883
    11. 11)
      • G. Ding , X. Wang , Z. Han . H∞ disturbance attenuation control of induction motor. Int. J. Adapt. Control Signal Process. , 223 - 244
    12. 12)
      • J.C. Basilio , S.R. Matos . Design of PI and PID controllers with transient performance specification. IEEE Trans. Educ. , 364 - 370
    13. 13)
      • W.C. Gan , L. Qiu . Design and analysis of a plug-in robust compensator: an application to indirect-field-oriented-control induction machine drives. IEEE Trans. Ind. Electron. , 272 - 282
    14. 14)
      • D.E. Rivera , M. Morari , S. Skogestad . Internal model control. 4. PID controller design. Ind. Eng. Chem. Process Des. Dev. , 252 - 265
    15. 15)
      • Makouf, A., Benbouzid, M.E.H., Diallo, D., Bouguechal, N.E.: `Induction motor robust control: an ', Proc. 27th Annual Conf. IEEE Industrial Electronics Society, 2001, Denver, USA.
    16. 16)
      • B.A. Francis . (1987) A course in .
    17. 17)
      • M.-P. Kazmierkowski , L. Malesani . Current control techniques for three-phase-voltage source PWM converters: a survey. IEEE Trans. Ind. Electron. , 691 - 703
    18. 18)
      • M.W. Naouar , E. Monmasson , A.A. Naassani , I. Slama-Belkhodja , N. Patin . FPGA-based current controllers for ac machine drives – a review. IEEE Trans. Ind. Electron. , 1907 - 1925
    19. 19)
      • W. Leonhard . (1990) Control of electrical drives.
    20. 20)
      • G.F. Franklin , J.D. Powell , M. Workman . (1997) Digital control of dynamic systems.
    21. 21)
      • C. Attaianese , G. Tomasso . H∞ control of induction motor drives. IEE Proc. Electr. Power Appl. , 272 - 278
    22. 22)
      • E. Prepain , I. Postlethwaite , A. Benchaib . A linear parameter variant H∞ control design for an induction motor. Control Eng. Pract. , 633 - 644
    23. 23)
      • M.V. Moreira , J.C. Basilio . Fragility problem revisited: overview and reformulation. IET Control Theory Appl. , 1496 - 1503
    24. 24)
      • J.C. Doyle , K. Glover , P.P. Khargonekar , B.A. Francis . State-space solutions to standard H2 and H∞ control problems. IEEE Trans. Autom. Control , 831 - 847
    25. 25)
      • K. Wang , J. Chiasson , M. Bodson , L.M. Tolbert . An online rotor time constant estimator for the induction machine. IEEE Trans. Control Syst. Technol. , 330 - 348
    26. 26)
      • M. Hasegawa , S. Furutani , S. Doki , S. Okuma . Robust vector control of induction motors using full-order observer in consideration of core loss. IEEE Trans. Ind. Electron. , 912 - 919
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2009.0377
Loading

Related content

content/journals/10.1049/iet-cta.2009.0377
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading