Cooperative control of underactuated surface vessels

Access Full Text

Cooperative control of underactuated surface vessels

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study considers the cooperative control of a group of underactuated surface vessels using the relative information between neighbour's information such that the group of surface vessels come into a desired geometric pattern whose centroid moves along a desired tajectory. With the aid of results from graph theory and Lyapunov techniques, decentralised cooperative control laws are proposed for different communication scenarios. The effect of communication delays on the proposed controllers is analysed. Simulation results show the effectiveness of the proposed control laws.

Inspec keywords: graph theory; decentralised control; marine systems; Lyapunov methods; delay systems

Other keywords: decentralised cooperative control laws; Lyapunov techniques; underactuated surface vessels; graph theory; communication delays

Subjects: Combinatorial mathematics; Distributed parameter control systems; Marine system control; Multivariable control systems; Stability in control theory

References

    1. 1)
      • Børhaug, E., Pavlov, A., Pettersen, K.Y.: `Cross-track formation control of underactuated surface vessels', Proc. IEEE Conf. on Decision and Control, 2006, p. 5955–5961.
    2. 2)
      • Reyhanoglu, M.: `Control and stabilisation of an underactuated surface vessel', Proc. 35th IEEE Conf. Decision and Control, 1996, p. 2371–2376.
    3. 3)
      • F. Arrichiello , S. Chiaverini , T.I. Fossen , K.Y. Pettersen , T. Gravdahl , H. Nijmeijer . (2006) Formation control of marine surface vessels using the null-space-based behavioral control,, Group coordination and cooperative control.
    4. 4)
      • M. Breivik , M.V. Subbotin , T.I. Fossen , K.Y. Pettersen , T. Gravdahl , H. Nijmeijer . (2006) Kinematic aspects of guided formation control in 2D,, Group coordination and cooperative control.
    5. 5)
      • I. Fantoni , R. Lozano , F. Mazenc , K.Y. Pettersen . Stabilization of a nonlinear underactuated hovercraft. Int. J. Robust Nonlinear Control , 8 , 645 - 654
    6. 6)
      • W. Dong , J.A. Farrell . Cooperative control of multiple nonholonomic mobile agents. IEEE Trans. Autom. Control , 1434 - 1448
    7. 7)
      • Petterson, K.Y., Nijmeijer, H.: `Global practical stabilisation and tracking for an underactuated ship–a combined averaging and backstepping approach', Proc. IFAC Conf. System Structure Control, 1998, p. 59–64.
    8. 8)
      • Chung, F.R.K.: `Spectral graph theory', Reg. Conf. Series in Mathematics of American Mathematical Society, 1997, 92.
    9. 9)
      • W. Dong , J.A. Farrell . Formation control of multiple underactuated surface vessels. IET Control Theory Appl. , 12 , 1077 - 1085
    10. 10)
      • A. Behal , D.M. Dawson , W.E. Dixon , Y. Fang . Tracking and regulation control of an underactuated surface vessel with nonintegrable dynamics. IEEE Trans. Autom. Control , 495 - 900
    11. 11)
      • I.-A. Ihle , J. Jouffroy , T.I. Fossen , K.Y. Pettersen , T. Gravdahl , H. Nijmeijer . (2006) Robust formation control of marine craft using lagrange multipliers, Group coordination and cooperative control.
    12. 12)
      • F. Mazenc , K.Y. Pettersen , H. Nijmeijer . Global uniform asymptotic stabilisation of an underactuated surface vessel. IEEE Trans. Autom. Control , 10 , 1759 - 1762
    13. 13)
      • J.J.E. Slotine , W. Li . (1991) Applied nonlinear control.
    14. 14)
      • Arrichiello, F., Chiaverini, S., Fossen, T.I.: `Formation control of underactuated surface vessels using the null-space-based behavioral control', Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2006, p. 5942–5947.
    15. 15)
      • Godhavn, J.-M.: `Nonlinear tracking of underactuated surface vessels', Proc. 35th Conf. Decision Control, 1996, p. 975–980.
    16. 16)
      • Aguiar, A., Ghabcheloo, R., Pascoal, A., Silvestre, C., Hespanha, J., Kaminer, I.: `Coordinated path-following of multiple underactuated autonomous vehicles with bidirectional communication constraints', Proc. Int. Symp. on Communications, Control and Signal Processing, 2006.
    17. 17)
      • E. Lefeber , K.Y. Pettersen , H. Nijmeijer . Tracking control of an underactuated ship. IEEE Trans. Control Syst. Technol. , 1 , 52 - 61
    18. 18)
      • Z.-P. Jiang . Global tracking control of underactuated ships by lyapunov's direct method. Automatica , 301 - 309
    19. 19)
      • K.Y. Pettersen , O. Egeland . Time-varying exponential stabilisation of the position and attitude of an underactuated autonomous underwater vehicle. IEEE Trans. Autom. Control , 1 , 112 - 115
    20. 20)
      • W. Dong , Y. Guo . Global time-varying stabilisation of underactuated surface vessel. IEEE Trans. Autom. Control , 6 , 859 - 864
    21. 21)
      • R. Merris . A survey of graph laplacians. Linear Multilinear Algebra , 19 - 31
    22. 22)
      • H.K. Khalil . (1996) Nonlinear Systems.
    23. 23)
      • R. Olfati-Saber , R.M. Murray . Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Control , 101 - 115
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2009.0362
Loading

Related content

content/journals/10.1049/iet-cta.2009.0362
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading