© The Institution of Engineering and Technology
For a class of largescale highorder stochastic nonlinear systems which are neither necessarily feedback linearisable nor affine in the control input, this study investigates the decentralised stabilisation for the first time. Under some moderate assumptions, smooth decentralised statefeedback controllers are designed, which ensure that the closedloop system has an almost surely unique solution on [0, ∞), the equilibrium at the origin of the closedloop system is globally asymptotically stable (GAS) in probability, the states can be regulated to the origin almost surely, and the problem of inverse optimal stabilisation (IOS) in probability is solved. The efficiency of the control scheme is demonstrated by a simulation example.
References


1)

X. Mao
.
Stability and stabilisation of stochastic differential delay equations.
IET Control Theory Appl.
,
6 ,
1551 
1566

2)

R. Yang ,
P. Shi ,
H. Gao
.
New delaydependent stability criterion for stochastic systems with time delays.
IET Control Theory Appl.
,
11 ,
966 
973

3)

Y. Liu ,
J.F. Zhang ,
Z.G. Pan
.
Design of satisfaction output feedback controls for stochastic nonlinear systems under quadratic tracking risksensitive index.
Sci. China. F
,
126 
145

4)

Y. Liu ,
Z.G. Pan ,
S. Shi
.
Output feedback control design for strictfeedback stochastic nonlinear systems under a risksensitive cost.
IEEE Trans. Autom. Control
,
509 
514

5)

Y. Liu ,
J. Zhang
.
Reducedorder obsererbased control design for nonlinear stochastic systems.
Syst. Control Lett.
,
123 
135

6)

Y. Liu ,
J. Zhang
.
Minimalorder observer and outputfeedback stabilization control design of stochastic nonlinear systems.
Sci. China F
,
527 
544

7)

Y. Liu ,
J. Zhang
.
Practical outputfeedback risksensitive control for stochastic nonlinear systems with stable zerodynamics.
SIAM J. Control Optim.
,
885 
926

8)

Z.G. Pan ,
T. Basar
.
Adaptive controller design for tracking and disturbance attenuation in parametric strictfeedback nonlinear systems.
IEEE Trans. Autom. Control
,
1066 
1083

9)

Z.G. Pan ,
T. Basar
.
Backstepping controller design for nonlinear stochastic systems under a risksensitive cost criterion.
SIAM J. Control Optim.
,
957 
995

10)

Z.G. Pan ,
Y. Liu ,
S. Shi
.
Output feedback stabilization for stochastic nonlinear systems in observer canonical form with stable zerodynamics.
Sci. China
,
292 
308

11)

Z.G. Pan ,
K. Ezal ,
A. Krener ,
P.V. Kokotović
.
Backstepping design with local optimality matching.
IEEE Trans. Autom. Control
,
1014 
1027

12)

H. Deng ,
M. Krstić
.
Stochastic nonlinear stabilization, part i: a backstepping design.
Syst. Control Lett.
,
143 
150

13)

H. Deng ,
M. Krstić
.
Outputfeedback stochastic nonlinear stabilization.
IEEE Trans. Autom. Control
,
328 
333

14)

H. Deng ,
M. Krstić
.
Outputfeedback stabilization of stochastic nonlinear systems driven by noise of unknown covariance.
Syst. Control Lett.
,
173 
182

15)

H. Deng ,
M. Krstić ,
R.J. Williams
.
Stabilization of stochastic nonlinear driven by noise of unknown covariance.
IEEE Trans. Autom. Control
,
1237 
1253

16)

M. Krstić ,
H. Deng
.
(1998)
Stabilization of uncertain nonlinear systems.

17)

Z.J. Wu ,
X.J. Xie ,
S.Y. Zhang
.
Adaptive backstepping controller design using stochastic smallgain theorem.
Automatica
,
608 
620

18)

Z.J. Wu ,
X.J. Xie ,
S.Y. Zhang
.
Stochastic adaptive backstepping controller design by introducing dynamic signal and changing supply function.
Int. J. Control
,
12 ,
1635 
1646

19)

S. Xie ,
L. Xie
.
Decentralized stabilization of a class of interconnected stochastic nonlinear systems.
IEEE Trans. Autom. Control
,
132 
137

20)

X.D. Ye ,
J. Huang
.
Decentralized adaptive output regulation for a class of largescale nonlinear systems.
IEEE Trans. Autom. Control
,
276 
281

21)

S.J. Liu ,
J.F. Zhang ,
Z.P. Jiang
.
Decentralized adaptive outputfeedback stabilization for largescale stochastic nonlinear systems.
Automatica
,
238 
251

22)

23)

Qian, C.J.: `Global synthesis of nonlinear systems with uncontrollable linearization', 2001, PhD, Case Western Reserve Universiy, Department of Electrical and Computer Science.

24)

X.J. Xie ,
J. Tian
.
Statefeedback stabilization for highorder stochastic nonlinear systems with stochastic inverse dynamics.
Int. J. Robust Nonlinear Control
,
1343 
1362

25)

X.J. Xie ,
J. Tian
.
Adaptive statefeedback stabilization of highorder stochastic systems with nonlinear parameterization.
Automatica
,
126 
133

26)

J. Tian ,
X.J. Xie
.
Adaptive statefeedback stabilization for highorder stochastic nonlinear systems with uncertain control coefficients.
Int. J. Control
,
1503 
1516

27)

J. Tian ,
X.J. Xie
.
Adaptive statefeedback stabilization for highorder stochastic nonlinear systems with timevarying control coefficients.
Acta Autom. Sin.
,
1188 
1191

28)

W.Q. Li ,
X.J. Xie
.
Inverse optimal stabilization for stochastic nonlinear systems whose linearizations are not stabilizable.
Automatica
,
498 
503

29)

X.J. Xie ,
W.Q. Li
.
Outputfeedback control of a class of highorder stochastic nonlinear systems.
Int. J. Control
,
1692 
1705

30)

D. Swaroop ,
J.K. Hedrick ,
P.P. Yip ,
J.C. Gerdes
.
Dynamic surface control for a class of nonlinear systems.
IEEE Trans. Autom. Control
,
1893 
1899

31)

P.P. Yip ,
J.K. Hedrick
.
Adaptive dynamic surface control: a simplified algorithm for adaptive backstepping control of nonlinear systems.
Int. J. Control
,
959 
979

32)

D. Wang ,
J. Huang
.
Neural networkbased adaptive dynamic surface control for a class of uncertain nonlinear systems in strictfeedback form.
IEEE Trans. Neural Netw.
,
195 
202

33)

S.J. Yoo ,
J.B. Park
.
Neuralnetworkbased decentralized adaptive control for a class of largescale nonlinear systems with unknown timevarying delays.
IEEE Trans. Syst. Man Cybern. B. Cybern.
,
1316 
1323
http://iet.metastore.ingenta.com/content/journals/10.1049/ietcta.2009.0322
Related content
content/journals/10.1049/ietcta.2009.0322
pub_keyword,iet_inspecKeyword,pub_concept
6
6