Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Adaptive formation tracking control of electrically driven multiple mobile robots

Adaptive formation tracking control of electrically driven multiple mobile robots

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

An adaptive formation control method is proposed for multiple uncertain non-holonomic mobile robots at the actuator dynamics level. All parameters of the robot kinematics and dynamics, and actuator dynamics are unknown. The virtual structure with path parameters and the dynamic surface design methodology are combined to design a simpler adaptive formation control scheme than the previous backstepping-based control system. Using the Lyapunov stability theorem, the authors present the adaptation laws for tuning all unknown parameters of multiple mobile robots regardless of considering path parameters in the reference trajectories. In addition, it is proved that all signals in the total closed-loop system are semi-globally uniformly bounded and all formation tracking errors and synchronisation errors of the path parameters converge to an adjustable neighbourhood of the origin. Finally, simulation results demonstrate the effectiveness of the proposed approach.

References

    1. 1)
      • T.P. Zhang , S.S. Ge . Adaptive dynamic surface control of nonlinear systems with unknown dead zone in pure feedback form. Automatica , 7 , 1895 - 1903
    2. 2)
      • Leonard, N.E., Fiorelli, E.: `Virtual leaders, artificial potentials and coordinated control of groups', Proc. IEEE Conf. on Decision and Control, 2001, p. 2968–2973.
    3. 3)
      • P. Yip , J.K. Hedrick . Adaptive dynamic surface control: a simplified algorithm for adaptive backstepping control of nonlinear systems. Int. J. Control , 5 , 959 - 979
    4. 4)
      • W. Ren , N. Sorensen . Distributed coordination architecture for multi-robot formation control. Robot. Auton. Syst. , 324 - 333
    5. 5)
      • T. Das , I.N. Kar . Design and implementation of an adaptive fuzzy logic-based controller for wheeled mobile robots. IEEE Trans. Control Syst. Technol. , 3 , 501 - 510
    6. 6)
      • L. Consolinia , F. Morbidi , D. Prattichizzo , M. Tosques . Leader-follower formation control of nonholonomic mobile robots with input constraints. Automatica , 1343 - 1349
    7. 7)
      • J.E. Slotine , W. Li . On the adaptive control of robot manipulators. Int. J. Robot. Res. , 3 , 49 - 59
    8. 8)
      • P. Ogren , M. Egerstedt , X. Hu . A control Lyapunov function approach to multiagent coordination. IEEE Trans. Robot. Autom. , 5 , 847 - 851
    9. 9)
      • K.D. Do , J. Pan . Nonlinear formation control of unicycle-type mobile robots. Robot. Auton. Syst. , 191 - 204
    10. 10)
      • Dong, W.J., Guo, Y., Farrell, J.A.: `Formation control of nonholonomic mobile robots', Proc. American Control Conf., 2006, p. 5602–5607.
    11. 11)
      • T. Balch , R.C. Arkin . Behavior-based formation control for multirobot teams. IEEE Trans. Robot. Autom. , 6 , 926 - 939
    12. 12)
      • T. Fukao , H. Nakagawa , N. Adachi . Adaptive tracking control of a nonholonomic mobile robot. IEEE Trans. Robot. Autom. , 5 , 609 - 615
    13. 13)
      • A.R. Girard , J.K. Hedrick . Formation control of multiple vehicles using dynamic surface control and hybrid systems. Int. J. Control , 913 - 923
    14. 14)
      • D. Swaroop , J.K. Hedrick , P. Yip , J.C. Gerdes . Dynamic surface control for a class of nonlinear systems. IEEE Trans. Autom. Control , 10 , 1893 - 1899
    15. 15)
      • Li, X., Xiao, J., Cai, Z.: `Backstepping based multiple mobile robots formation control', Proc. IEEE/RSJ Int. Conf. on Intelligent Robots Systems, 2005, p. 887–892.
    16. 16)
      • Tan, K.H., Lewis, M.A.: `Virtual structures for high-precision cooperative mobile robotic control', Proc. IEEE/RSJ Int. Conf. on Intelligent Robots Systems, 1996, p. 132–139.
    17. 17)
      • P.A. Ioannou , P.V. Kokotovic . (1983) Adaptive systems with reduced models.
    18. 18)
      • Kanayama, Y., Miyazaki, F., Noguchi, T.: `A stable tracking control method for an autonomous mobile robot', Proc. IEEE Int. Conf. on Robotics and Automation, 1990, p. 384–389.
    19. 19)
      • J.P. Desai , J.P. Ostrowski , V. Kumar . Modeling and control of formations of nonholonomic mobile robots. IEEE Trans. Robot. Autom. , 6 , 905 - 908
    20. 20)
      • Ghommam, J., Saad, M., Mnif, F.: `Formation path following control of unicycle-type mobile robots', Proc. IEEE Int. Conf. on Robotics and Automation, 2008, p. 1966–1972.
    21. 21)
      • M.A. Lewis , K.-H. Tan . High precision formation control of mobile robots using virtual structures. Auton. Robots , 387 - 403
    22. 22)
      • M. Krstic , I. Kanellakopoulos , P.V. Kokotovic . (1995) Nonlinear and adaptive control design.
    23. 23)
      • D. Wang , J. Huang . Neural network-based adaptive dynamic surface control for a class of uncertain nonlinear systems in strict-feedback form. IEEE Trans. Neural Netw. , 1 , 195 - 202
    24. 24)
      • J.R.T. Lawton , R.W. Beard , B.J. Young . A decentralized approach to formation maneuvers. IEEE Trans. Robot. Autom. , 6 , 933 - 941
    25. 25)
      • Beard, R.W., Lawton, J., Hadaegh, F.Y.: `A feedback architecture for formation control', Proc. American Control Conf., 2000, p. 4087–4091.
    26. 26)
      • J. Shao , G. Xie , L. Wang . Leader-following formation control of multiple mobile vehicles. IET Control Theory Appl. , 2 , 545 - 552
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2009.0280
Loading

Related content

content/journals/10.1049/iet-cta.2009.0280
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address