Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Theory and experiments of global adaptive output feedback tracking control of manipulators

Theory and experiments of global adaptive output feedback tracking control of manipulators

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A new adaptive controller for robot manipulators is proposed. The new approach uses only position measurements. The main conclusions derived from the closed-loop system analysis are in two main results. In the first one, the global convergence of the position and velocity tracking errors is stated by using a condition that relates the viscous friction damping and the desired joint speed. In the second one, such a condition is dropped out but the local exponential stability of the closed-loop system is shown. To confirm the theoretical conclusions, a detailed experimental study in a two degrees-of-freedom direct-drive manipulator is provided, where the performance of the new controller is compared with respect to a known output feedback adaptive controller.

References

    1. 1)
      • Santibáñez, V., Kelly, R.: `Global asymptotic stability of bounded output feedback tracking control for robot manipulators', 40thIEEE Conf. on Decision and Control, December 2001, Orlando, FL, p. 1378–1379.
    2. 2)
      • L. Ljung . (1999) System identification: theory for the user.
    3. 3)
      • Zergeroglu, E., Dawson, D.M., de Queiroz, M.S., Krstić, M.: `On global output feedback tracking control of robot manipulators', Proc. IEEE Conf. on Decision and Control, December 2000, Sydney, Australia, p. 5073–5078.
    4. 4)
      • M.A. Arteaga . Robot control and parameter estimation with only joint position measurements. Automatica , 67 - 73
    5. 5)
      • S. Arimoto . Fundamental problems of robot control: part 2, a nonlinear circuit theory towards an understanding of dexterous motions. Robotica , 111 - 122
    6. 6)
      • A. Loria , R. Kelly , A. Teel . Uniform parametric convergence in the adaptive control of mechanical systems. Eur. J. Control , 2 , 87 - 100
    7. 7)
      • F. Zhang , D.M. Dawson , M.S. de Queiroz , W. Dixon . Global adaptive output feedback tracking control of robot manipulators. IEEE Trans. Autom. Control , 6 , 1203 - 1208
    8. 8)
      • R. Horn , C. Johnson . (1985) Matrix analysis.
    9. 9)
      • R. Kelly , V. Santibáñez , A. Loria . (2005) Control of robot manipulators in joint space.
    10. 10)
      • W. Dixon , E. Zergeroglu , D.M. Dawson , M.W. Hannan . Global adaptive partial state feedback tracking control of rigid-link flexible-joint robots. Robotica , 325 - 336
    11. 11)
      • H.K. Khalil . (1988) Nonlinear systems.
    12. 12)
      • L. Sciavicco , B. Siciliano . (2000) Modelling and control of robot manipulators.
    13. 13)
      • E. Aguiñaga-ruiz , A. Zavala-Río , V. Santibáñez , F. Reyes . Global trajectory tracking through static feedback for robot manipulators with bounded inputs. IEEE Trans. Control Syst. Technol. , 4 , 934 - 944
    14. 14)
      • J.M. Daly , H.M. Schwartz . Experimental results for output feedback adaptive robot control. Robotica , 727 - 738
    15. 15)
      • S.P. Chan . An efficient algortihm for identification of robot parameters including drive characteristics. J. Intell. Robot. Syst. , 3 , 291 - 305
    16. 16)
      • M. Queiroz , D. Dawson , S. Nagarkatti , F. Zhang . (2000) Lyapunov-based control of mechanical systems.
    17. 17)
      • S. Arimoto . Fundamental problems of robot control: part 1, innovations in the realm of robot servo-loops. Robotica , 19 - 27
    18. 18)
      • M. Krstić , I. Kanellakopoulos , P. Kokotović . (1995) Nonlinear and adaptive controller control design.
    19. 19)
      • C. Canudas de wit , B. Siciliano , G. Bastin . (1996) Theory of robot control.
    20. 20)
      • E.V.L. Nunes , L. Hsu . Global tracking for robot manipulators using a simple causal PD controller plus feedforward. Robotica , 1 , 23 - 34
    21. 21)
      • F. Alonge , F. D'ippolito , T. Raimondi . A control law for robotic manipulators based on a filtered signal to generate PD action and velocity estimates. Int. J. Robot. Autom. , 2 , 126 - 138
    22. 22)
      • Zhang, F., Dawson, D.M., de Queiroz, M.S., Dixon, W.E.: `Global adaptive output feedback tracking control of robot manipulators', Proc. 36th IEEE Conf. on Decision and Control, 10–12 December 1997, San Diego, CA, p. 3634–3639.
    23. 23)
      • R. Ortega , A. Loría , H.H. Sira-Ramírez , P.J. Nicklasson . (1998) Passivity-based control of Euler–Lagrange systems.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2009.0249
Loading

Related content

content/journals/10.1049/iet-cta.2009.0249
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address