© The Institution of Engineering and Technology
The state transfer of closed quantum systems in the interaction picture is studied. The convergent problem encountered in designing control laws based on the Lyapunov method is solved by the well constructed observable operator and a path programming control strategy. It is proved that the condition for the target state being a stable point in the Lyapunov's sense is the coherent vectors of the observable operator and the target state must be in opposite directions. For the local optimisation limitation of the Lyapunovbased method, the path programming control strategy is proposed, which is used to change the distribution of stationary points or choose a transition path by appropriately selecting intermediate target states. Comparative numerical system simulation experiments are implemented on a fourlevel quantum system and the experimental results are analysed.
References


1)

S. Cong
.
(2006)
Introduction to quantum mechanical system control.

2)

J.A. Armstrong ,
E. Courtens
.
Exact solution of a πpulse problem.
IEEE J. Quant. Electron.
,
6 ,
411 
419

3)

N. Imoto
.
Controlling twolevel atoms with a quantized π or π/2 pulse.
Prog. Crystal Growth Charact.
,
295 
301

4)

S. Cong ,
Y.S. Lou
.
Design of control sequence of pulses for the population transfer of high dimensional spin 1/2 quantum systems.
J. Syst. Eng. Electron.
,
6 ,
1226 
1234

5)

E.A. Shapiro ,
A. Pe'er ,
J. Ye ,
M. Shapiro
.
Piecewise adiabatic population transfer in a molecule via a wave packet.
Phys. Rev. Lett.

6)

S.D. Clow ,
C. TralleroHerrero ,
T. Bergeman ,
T. Weinacht
.
Strong field multiphoton inversion of a threelevel system using shaped ultrafast laser pulses.
Phys. Rev. Lett.

7)

S.G. Schirmer ,
A.D. Greentree ,
V. Ramakrishna ,
H. Rabitz
.
Constructive control of quantum systems using factorization of unitary operators.
J. Phys. A, Math. Gen.
,
8315 
8339

8)

Lou, Y.S., Cong, S.: `Track control of the states evolution of quantum system based on Bloch sphere', Proc. 26th Chinese Control Conf., 2007, Hunan, China, p. 576–580.

9)

G. Dirr ,
U. Helmke
.
Lie theory for quantum control.
GAMMMitt.
,
1 ,
59 
93

10)

S.H. Shi ,
A. Woody ,
H. Rabitz
.
Optimal control of selective vibrational excitation in harmonic linear chain molecules.
J. Chem. Phys.
,
11 ,
6870 
6883

11)

S.G. Schirmer ,
M.D. Girardeau ,
J.V. Leahy
.
(1999)
Efficient algorithm for optimal control of mixedstate quantum systems.

12)

Y. Ohtsuki ,
K. Nakagami ,
W. Zhu ,
H. Rabitz
.
Quantum optimal control of wave packet dynamics under the influence of dissipation.
Chem. Phys.
,
197 
216

13)

Vettori, P.: `On the convergence of a feedback control strategy for multilevel quantum systems', Proc. MTNS Conf., 2002.

14)

S. Cong ,
S. Kuang
.
Quantum control strategy based on state distance.
Acta Automatica Sinica
,
1 ,
28 
31

15)

C. Altafini
.
Feedback control of spin systems.
Quant. Inf. Process.
,
1 ,
9 
36

16)

M. Sugawara
.
General formulation of locally designed coherent control theory for quantum system.
J. Chem. Phys.
,
15 ,
6784 
6800

17)

M. Mirrahimi ,
P. Rouchon ,
G. Turinici
.
Lyapunov control of bilinear Schrödinger equations.
Automatica
,
1987 
1994

18)

K. Beauchard ,
J.M. Coron ,
M. Mirrahimi ,
P. Rouchon
.
Implicit Lyapunov control of finite dimensional Schrödinger equations.
Syst. Control Lett.
,
388 
395

19)

S. Kuang ,
S. Cong
.
Lyapunov control methods of closed quantum systems.
Automatica
,
98 
108

20)

I.E. Linington ,
P.A. Ivanov ,
N.V. Vitanov ,
M.B. Plenio
.
Robust control of quantized motional states of a chain of trapped ions by collective adiabatic passage.
Phys. Rev. A

21)

J. LaSalle ,
S. Lefschetz
.
(1961)
Stability by Lyapunov's direct method with applications.

22)

Schirmer, S.G.: `Quantum control using lie group decompositions', IEEE Conf. on Decision and Control, 2001, 12, p. 298–303.
http://iet.metastore.ingenta.com/content/journals/10.1049/ietcta.2009.0248
Related content
content/journals/10.1049/ietcta.2009.0248
pub_keyword,iet_inspecKeyword,pub_concept
6
6