http://iet.metastore.ingenta.com
1887

Bounded control of network connectivity in multi-agent systems

Bounded control of network connectivity in multi-agent systems

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A distributed control law that guarantees connectivity maintenance in a network of multiple mobile agents is presented. The control law, which lets the agents perform formation manoeuvres, respects sensor limitations by allowing each agent to only take into account agents within its sensing radius. In contrast to previous approaches to the problem, the proposed control law does not attain infinite values whenever an edge of the communication graph tends to be lost. This is achieved via the use of decentralised navigation functions, which are bounded potential fields. The navigation functions are defined to take into account the connectivity maintenance objective. The authors first treat the case of connectivity maintenance for a static communication graph and then extend the result to the case of dynamic graphs. The results are illustrated on a formation control problem.

References

    1. 1)
      • Xiao, L., Boyd, S.: `Fast linear iterations for distributed averaging', 42ndIEEE Conf. Decision and Control, 2003, p. 4997–5002.
    2. 2)
      • R. Olfati-Saber , R. Murray . Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Control , 9 , 1520 - 1533
    3. 3)
      • Fang, L., Antsaklis, P.J., Tzimas, A.: `Asynchronous consensus protocols: preliminary results, simulations and open questions', 44thIEEE Conf. Decision and Control, 2005, p. 2194–2199.
    4. 4)
      • Hsieh, M.A., Kumar, V.: `Pattern generation with multiple robots', IEEE Int. Conf. Robotics and Automation, 2006, p. 2442–2447.
    5. 5)
      • R. Olfati-Saber . Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Trans. Autom. Control , 3 , 401 - 420
    6. 6)
      • Ji, M., Egerstedt, M.: `Connectedness preserving distibuted coordination control over dynamic graphs', 2005 American Control Conf., 2005, p. 93–98.
    7. 7)
      • D.V. Dimarogonas , K.J. Kyriakopoulos . On the rendezvous problem for multiple nonholonomic agents. IEEE Trans. Autom. Control , 5 , 916 - 922
    8. 8)
      • Zavlanos, M.M., Pappas, G.J.: `Distributed connectivity control of mobile networks', 46thIEEE Conf. Decision and Control, 2007, p. 3591–3596.
    9. 9)
      • Zavlanos, M.M., Tahbaz-Salehi, A., Jadbabaie, A., Pappas, G.J.: `Distributed topology control of dynamic networks', 2008 American Control Conf., 2008, p. 2660–2665.
    10. 10)
      • D.V. Dimarogonas , K.J. Kyriakopoulos . Connectedness preserving distributed swarm aggregation for multiple kinematic robots. IEEE Trans. Robot. , 5 , 1213 - 1223
    11. 11)
      • DeGennaro, M.C., Jadbabaie, A.: `Decentralized control of connectivity for multi-agent systems', 45thIEEE Conf. Decision and Control, 2006, p. 3628–3633.
    12. 12)
      • D.E. Koditschek , E. Rimon . Robot navigation functions on manifolds with boundary. Adv. Appl. Math. , 412 - 442
    13. 13)
      • D.V. Dimarogonas , S.G. Loizou , K.J. Kyriakopoulos , M.M. Zavlanos . A feedback stabilization and collision avoidance scheme for multiple independent non-point agents. Automatica , 2 , 229 - 243
    14. 14)
      • H.G. Tanner , A. Kumar . (2005) Formation stabilization of multiple agents using decentralized navigation functions.
    15. 15)
      • W. Ren , E. Atkins . Distributed multi-vehicle coordinated control via local information exchange. Int. J. Robust Nonlinear Control , 1002 - 1033
    16. 16)
      • N. Biggs . (1993) Algebraic graph theory.
    17. 17)
      • M. Ji , M. Egerstedt . Distributed coordination control of multiagent systems while preserving connectedness. IEEE Trans. Robot. , 4 , 693 - 703
    18. 18)
      • Karagoz, C.S., Bozma, H.I., Koditschek, D.E.: `Coordinated navigation of multiple independent disk-shaped robots', Tech. Report no. mscis-07-16, 2007.
    19. 19)
      • Loizou, S.G., Kyriakopoulos, K.J.: `Closed loop navigation for multiple holonomic vehicles', Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2002, p. 2861–2866.
    20. 20)
      • D.G. Luenberger . (1979) Introduction to dynamic systems: theory, models and applications.
    21. 21)
      • Moreau, L.: `Stability of continuous-time distributed consensus algorithms', 43rdIEEE Conf. Decision and Control, 2004, p. 3998–4003.
    22. 22)
      • R.G. Gallager , P.A. Humblet , M. Spira . A distributed algorithm for minimum-weight spanning trees. ACM Trans. Program. Lang. Syst. , 1 , 66 - 77
    23. 23)
      • Dimarogonas, D.V., Johansson, K.H.: `Decentralized connectivity maintenance in mobile networks with bounded inputs', IEEE Int. Conf. Robotics and Automation, 2008, p. 1507–1512.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2009.0229
Loading

Related content

content/journals/10.1049/iet-cta.2009.0229
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address