© The Institution of Engineering and Technology
In this study, a stability criterion and robust ℋ_{∞} mode delaydependent quantised dynamic output feedback controller design problem for discretetime systems with random communication delays, packet dropouts and quantisation errors are investigated. Random communication delays from the sensor to controller network are modelled using a finitestate Markov chain with a special transition probability. A logarithmic quantiser is used to quantise the measured output. The Lyapunov–Krasovskii (L–K) functional approach is used to derive the stochastic stability criterion for the system with a given attenuation level. Sufficient conditions for the existence of an output feedback controller is formulated in terms of bilinear matrix inequalities (BMIs). Owing to the special transition probability matrix, a new slack matrix is added to BMIs to relax the sufficient conditions for the existence of an output feedback controller. Furthermore, an iterative algorithm is used to convert the BMIs into the quasiconvex optimisation problem which can be solved easily. An example is given to demonstrate the effectiveness of the proposed design.
References


1)

W. Zhang ,
M.S. Branicky ,
S.M. Philips
.
Stability of networked control systems.
IEEE Control Syst. Mag.
,
1 ,
84 
99

2)

Zhang, Y., Zhong, Q.: `Stability of networked control systems with communication constraints', 2008 Chinese Control and Decision Conf., 2008, p. 335–339.

3)

Y.Y. Cao ,
J. Lam
.
Delaydependent stochastic stability and ℋ∞ analysis for timedelay systems with Markovian jumping parameters.
J. Franklin Inst.
,
423 
434

4)

Z.D. Wang ,
J. Lam ,
X.H. Liu
.
Exponential filtering for uncertain Markovian jump timedelay systems with nonlinear disturbances.
IEEE Trans. Circuits Syst.
,
262 
268

5)

S.Y. Xu ,
J. Lam ,
X.R. Mao
.
Delaydependent ℋ1 control and filtering for unertain Markovian jump systems with timevarying delays.
IEEE Trans. Circuits Syst.
,
561 
566

6)

Z. Wang ,
F. Yang
.
Robust filtering for uncertain linear systems with delayed states and outputs.
IEEE Trans. Circuits Syst. I, Fundam. Theory Appl.
,
1 ,
125 
130

7)

Gao, H., Chen, T., Lam, J.: `A new model for timedelay systems with application to network based control', 2006 Chinese Control Conf., 2006, p. 56–61.

8)

S. Hu ,
W.Y. Yan
.
Stability robustness of networked control systems with respect to packet loss.
Automatica
,
7 ,
1243 
1248

9)

F. Yang ,
Z. Wang ,
Y. Hung ,
M. Gani
.
ℋ∞ control for networked systems with random communication delays.
IEEE Trans. Autom. Control
,
3 ,
511 
518

10)

D. Srinivasagupta ,
H. Schättler ,
B. Joseph
.
Timestamped model predictive control: an algorithm for control of processes with random delays.
Comput. Chem. Eng.
,
8 ,
1337 
1346

11)

D. Huang ,
S.K. Nguang
.
State feedback control of uncertain networked control systems with random time delays.
IEEE Trans. Autom. Control
,
3 ,
829 
834

12)

J.F. Hayes
.
(1984)
Modeling and analysis of computer communications networks.

13)

Yufeng, W., Changhong, W., Xu, H.: `Guaranteed cost control with random communication delays via jump linear system approach', Eighth Control, Automation, Robotics and Vision Conf., 2004, 1, p. 298–303.

14)

I.V. Kolmanovsky ,
T.L. Maizenberg
.
Optimal control of continuoustime linear systems with a timevarying, random delay.
Syst. Control Lett.
,
2 ,
119 
126

15)

C. Peng ,
Y.C. Tian
.
Networked ℋ∞ control of linear systems with state quantization.
Inf. Sci.
,
5763 
5774

16)

E. Tian ,
D. Yue ,
X. Zhao
.
Quantised control design for networked control systems.
IET Control Theory Appl.
,
1693 
1699

17)

D. Yue ,
C. Peng ,
G.Y. Tang
.
Guaranteed cost control of linear systems over networks with state and input quantizations.
IEE Proc. Control Theory Appl.
,
2 ,
658 
664

18)

E. Tian ,
D. Yue ,
C. Peng
.
Quantized output feedback control for networked control systems.
Inf. Sci.
,
2734 
2749

19)

Xiao, L., Hassibi, A., How, J.: `Control with random communication delays via a discretetime jump system approach', Proc. 2000 American Control Conf., 2000, 3, p. 2199–2204.

20)

M. Fu ,
L. Xie
.
The sector bound approach to quantized feedback control.
IEEE Trans. Autom. Control
,
1698 
1711

21)

E.K. Boukas ,
Z.K. Liu
.
Robust stability and stabilizability of Markov jump linear uncertain systems with modedependent time delays.
J. Optim. Theory Appl.
,
3 ,
587 
600

22)

E.K. Boukas ,
P. Shi ,
M. Karan ,
C.Y. Kaya
.
Linear discretetime systems with Markovian jumps and mode dependent timedelay: stability and stabilizability.
Math. Probl. Eng.
,
2 ,
123 
133

23)

Z.H. Guan ,
W.H. Chen ,
J.X. Xu
.
Delaydependent stability and stabilizability of uncertain jump bilinear stochastic systems with modedependent timedelays.
Int. J. Syst. Sci.
,
5 ,
275 
285

24)

Chen, W.H., Zheng, W.X.: `Robust stabilization of delayed Markovian jump systems subject to parametric uncertainties', Proc. 46th IEEE Conf. on Decision and Control, 2007, New Orleans, LA, USA, p. 3054–3059.

25)

E.G. Laurent ,
O. Francois ,
A. Mustapha
.
A cone complementarity linearization algorithm for static outputfeedback and related problems.
IEEE Trans. Autom. Control
,
8 ,
1171 
1176

26)

Goncalves, A.P.C., Fioravanti, A.R., Geromel, J.C.: `Dynamic output feedback ℋ', Proc. 47th IEEE Conf. on Decision and Control, 2008, Cancun, Mexico, p. 4787–4792.
http://iet.metastore.ingenta.com/content/journals/10.1049/ietcta.2009.0222
Related content
content/journals/10.1049/ietcta.2009.0222
pub_keyword,iet_inspecKeyword,pub_concept
6
6