http://iet.metastore.ingenta.com
1887

Studies on linear matrix inequality relaxations for fuzzy control systems via homogeneous polynomials

Studies on linear matrix inequality relaxations for fuzzy control systems via homogeneous polynomials

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, the authors investigate a relaxed condition characterised by parameter-dependent linear matrix inequality (PD-LMI) in terms of firing strength belonging to the unit simplex, exploiting the algebraic property of Pólya's theorem to construct a family of finite-dimensional LMI relaxations. The main contribution of this study is that sets of relaxed LMI are parameterised in terms of the polynomial degree d. As d increases, progressively less conservative LMI conditions are generated, being easier satisfied owing to more freedom provided by new variables involved. Another protruding feature is that a verifiable necessary condition is derived. Furthermore, the new relaxation results for PD-LMI is shown to include and generalise all previous results on quadratic (common P) stability approach. Lastly, numerical experiments for illustrating the advantage of relaxation, being less conservative and effective, are provided.

References

    1. 1)
      • K. Tanaka , M. Sugeno . Stability analysis and design of fuzzy control systems. Fuzzy Set Syst. , 135 - 156
    2. 2)
      • H.O. Wang , K. Tanaka , M.F. Griffin . An approach to fuzzy control of nonlinear systems: stability and designissues. IEEE Trans. Fuzzy Syst. , 1 , 14 - 23
    3. 3)
      • K. Tanaka , T. Ikeda , H. Wang . Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs. IEEE Trans. Fuzzy Syst. , 2 , 250 - 265
    4. 4)
      • E. Kim , H. Lee . New approaches to relaxed quadratic stability condition of fuzzy control systems. IEEE Trans. Fuzzy Syst. , 5 , 523 - 534
    5. 5)
      • X. Liu , Q. Zhang . New approaches to H∞ controller designs based on fuzzy observers for T–S fuzzy systems via LMI. Automatica , 1571 - 1582
    6. 6)
      • C.-H. Fang , Y.-S. Liu , S.-W. Kau , L. Hong , C.-S. Lee . A new LMI-based approach to relaxed quadratic stabilization of T–S fuzzy control systems. IEEE Trans. Fuzzy Syst. , 3 , 386 - 397
    7. 7)
      • S. Cao , N. Rees , G. Feng . H∞ control of nonlinear continuous-time systems based on dynamical fuzzy models. Int. J. Syst. Sci. , 9 , 821 - 830
    8. 8)
      • M. Johansson , A. Rantzer . Computation of piecewise quadratic Lyapunov functions for hybrid systems. IEEE Trans. Autom. Control , 4 , 555 - 559
    9. 9)
      • M. Johansson , A. Rantzer , K.-E. Arzen . Piecewise quadratic stability of fuzzy systems. IEEE Trans. Fuzzy Syst. , 6 , 713 - 722
    10. 10)
      • G. Feng , J. Ma . Quadratic stabilization of uncertain discrete-time fuzzy dynamic system. IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. , 11 , 1137 - 1344
    11. 11)
      • Chadli, M., Maquin, D., Ragot, J.: `Relaxed stability conditions for Takagi-Sugeno fuzzy systems', Proc. 2000 IEEE Int. Conf. on Systems, Man, and Cybernetics, 2000, 5, p. 3514–3519.
    12. 12)
      • Tanaka, K., Hori, T., Wang, H.: `A fuzzy Lyapunov approach to fuzzy control system design', American Control Conf., 2001, Arlington, VA, 6, p. 4790–4795.
    13. 13)
      • Tanaka, K., Hori, T., Wang, H.: `A dual design problem via multiple Lyapunov functions', Proc. Tenth IEEE Conf. Fuzzy Systems, 2001, Melbourne, Australia, 1, p. 388–391.
    14. 14)
      • Tanaka, K., Hori, T., Wang, H.: `New parallel distributed compensation using time derivative of membership functions: a fuzzy Lyapunov approach', Proc. 40th IEEE Conf. Decision and Control, 2001, Orlando, FL, 4, p. 3942–3947.
    15. 15)
      • K. Tanaka , T. Hori , H. Wang . A multiple Lyapunov function approach to stabilization of fuzzy control systems. IEEE Trans. Fuzzy Syst. , 4 , 582 - 589
    16. 16)
      • B. Ding , B. Huang . Reformulation of LMI-based stabilization conditions for non-linear systems in Takagi–Sugeno's form. Int. J. Syst. Sci. , 5 , 487 - 496
    17. 17)
      • Montagner, V., Oliveira, R., Peres, P.: `Necessary and sufficient LMI conditions to compute quadratically stabilizing state feedback controller for Takagi–Sugeno systems', Proc. 2007 American Control Conf., July 2007, p. 4059–4064.
    18. 18)
      • R. Oliveira , P. Peres . Stability of polytopes of matrices via affine parameter-dependent Lyapunov functions: asymptotically exact LMI conditions. Linear Algebr. Appl. , 209 - 228
    19. 19)
      • Oliveira, R., Peres, P.: `LMI conditions for the existence of polynomially parameter-dependent Lyapunov functions assuring robust stability', Proc. 44th IEEE Conf. on Decision and Control, December 2005, Seville, Spain, p. 1660–1665.
    20. 20)
      • R. Oliveira , P. Peres . LMI conditions for robust stability analysis based on polynomially parameter-dependent Lyapunov functions. Syst. Control Lett. , 52 - 61
    21. 21)
      • R.C.L.F. Oliveira , P.L.D. Peres . Parameter-dependent LMIs in robust analysis: characterization of homogeneous polynomially parameter-dependent solutions via LMI relaxations. IEEE Trans. Autom. Control , 7 , 1334 - 1340
    22. 22)
      • A. Sala , C. Ariño . Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: applications of Polya's theorem. Fuzzy Set Syst. , 2671 - 2686
    23. 23)
      • Sala, A., Ariño, C.: `Design of multiple-parameterization PDC controllers via relaxed condition for multi- dimensional fuzzy summations', Proc. Fuzz-IEEE'07, 2007, London, UK, doi:10.1109/FUZZY.2007.4295495.
    24. 24)
      • Wan, J., Lo, J.: `LMI relaxations for nonlinear fuzzy control systems via homogeneous polynomials', The 2008 IEEE World Congress on Computational Intelligence, FUZZ2008, June 2008, Hong Kong, CN, p. 134–140.
    25. 25)
      • E.F. Beckenbach , R. Bellman . (1983) Inequalities.
    26. 26)
      • Scherer, C.: `Higher-order relaxations for robust LMI problems with verifications for exactness', Proc. 42th IEEE Conf. on Decision and Control, December 2003, p. 4652–4657.
    27. 27)
      • C. Scherer . Relaxations for robust linear matrix inequality problems with verification for exactness. SIAM J. Matrix Anal. Appl. , 2 , 365 - 395
    28. 28)
      • V. Power , B. Reznick . A new bound for Pólya's Theorem with applications to polynomials positive on polyhedra. J. Pure Appl. Algebr. , 221 - 229
    29. 29)
      • K. Tanaka , H. Wang . (2001) Fuzzy control systems design: a linear matrix inequality approach.
    30. 30)
      • P. Gahinet , A. Nemirovski , A.J. Laub , M. Chilali . (1995) LMI control toolbox for use with MATLAB.
    31. 31)
      • V. Montagner , R. Oliveira , P. Peres . Convergent LMI relaxations for quadratic stabilization and H∞ control of Takagi-Sugeno fuzzy systems. IEEE Trans. Fuzzy Syst. , 863 - 873
    32. 32)
      • A. Kruszewski , A. Sala , T.M. Guerra , C. Ariño . A triangulation approach to asymptotically exact conditions for fuzzy summations. IEEE Trans. Fuzzy Syst. , 5 , 985 - 994
    33. 33)
      • B. Ding , H. Sun , P. Yang . Further studies on LMI-based relaxed stabilization conditions for nonlinear systems in Takagi-Sugeno's form. Automatica , 503 - 508
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2009.0192
Loading

Related content

content/journals/10.1049/iet-cta.2009.0192
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address