Stabilisation of individual generators with SVC designed via phase plane partitioning

Access Full Text

Stabilisation of individual generators with SVC designed via phase plane partitioning

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

By phase plane partitioning, dynamics of individual generators in multimachine systems are approximately represented by means of a sequence of linear time-invariant (LTI) state-space equations, based on which various static VAR compensators (SVCs) are designed to stabilise the individual generators by exploiting the well-known LTI stabilisation techniques. More precisely, the author works out state-feedback-controlled SVCs through pole assignment (PA) and least quadratic regulation (LQR), respectively. The suggested SVCs can also accommodate transient and steady-state performance specification on the generator's dynamics, besides its stabilisation. Numeric examples clearly illustrate efficacy and convenience of the stabilisation techniques.

Inspec keywords: power system control; stability; state-space methods; state feedback; synchronous generators; static VAr compensators

Other keywords: state-space equations; linear time-invariant equations; LTI stabilisation techniques; individual generators; least quadratic regulation; phase plane partitioning; state feedback; multimachine systems; static VAr compensators; pole assignment

Subjects: Synchronous machines; Stability in control theory; Control of electric power systems; Other power apparatus and electric machines; Power system control; Control system analysis and synthesis methods

References

    1. 1)
      • H.D. Chiang , C.C. Chu . Stability regions of nonlinear autonomous dynamical systems. IEEE Trans. Autom. Control , 1 , 16 - 17
    2. 2)
      • J. Zhou , Y. Ohsawa . Improved swing equation and its properties in synchoronous generators. IEEE Trans. Circuits Syst. I , 1 , 200 - 209
    3. 3)
      • N.G. Hingorani , L. Gyugyi . (2000) Understanding FACTS: concepts and technology of flecxible AC transmission systems.
    4. 4)
      • M. Vidyasagar . (2002) Nonlinear systems analysis.
    5. 5)
      • F.M.A. Salam . Asymptotic stability and estimating the region of attraction for the swing equations. Syst. Control Lett. , 4 , 309 - 312
    6. 6)
      • R. Gupta , B. Bandyopadhyay , A.M. Kulkarni . Power system stabilizer for multimachine power system using robust decentralised periodic output feedback. IEE Proc. Control Theory Appl. , 1 , 3 - 8
    7. 7)
      • F.W. Fairman . (1998) Linear control theory – the state space approach.
    8. 8)
      • M.E. Aboul-Ela , A.A. Sallam , J.D. McCalley , A.A. Fouad . Damping controller design for power system oscillations using global signals. IEEE Trans. Power Syst. , 2 , 767 - 773
    9. 9)
      • G. Damm , R. Marino , F. Lamnabhi-Lagarrigue . Adaptive nonlinear output feedback for transient stabilization and voltage regulation of power generators with unknown parameters. Int. J. Robust Nonlinear Control , 833 - 855
    10. 10)
      • E.Z. Zhou . Application of static VAR compensators to increase power system damping. IEEE Trans. Power Syst. , 2 , 655 - 661
    11. 11)
      • V.I. Vorotnikov . (1998) Partial stabiltiy and control.
    12. 12)
      • T.C. Yang , N. Munro , A. Brameller . A new decentralized stabilization method with application to power system stabilizer design for multimachine systems. Int. J. Electr. Power Energy Syst. , 206 - 261
    13. 13)
      • K.R. Padiyar . (1996) Power system dynamics.
    14. 14)
      • Q. Lu , S.W. Mei , W. Hu , F.F. Wu , Y.X. Ni , T.L. Shen . Nonlinear decentralized disturbance attenuation excitation control via new recursive design for multi-machine power systems. IEEE Trans. Power Syst. , 4 , 729 - 736
    15. 15)
      • Y.Y. Wang , D.J. Hill , G.X. Guo . Robust decentralized control for multimachine power systems. IEEE Trans. Circuits Syst. I , 3 , 271 - 279
    16. 16)
      • C.W. Liu , J.S. Thorp , J. Lu , R.J. Thomas , H.D. Chiang . Detection of transiently chaotic swings in power-systems using real-time phasor measurements. IEEE Trans. Power Syst. , 3 , 1285 - 1292
    17. 17)
      • L. Cong , Y. Wang , D.J. Hill . Co-ordinated control design of genertor excitation and SVC for transient stability and voltage regulation enhancement of multi-machine power systems. Int. J. Robust Nonlinear Control , 789 - 805
    18. 18)
      • L.F.C. Alberto , N.G. Bretas . Synchronism versus stability in power systems. Int. J. Electr. Power Energy Syst. , 4 , 261 - 267
    19. 19)
      • D. O'Regan . (1997) Existence theory for nonlinear ordinary differential equations.
    20. 20)
      • M.H. Haque . Improvement of first swing stability limit by utilizing full benefit of shunt FACTS devices. IEEE Trans. Power Syst. , 4 , 1894 - 1902
    21. 21)
      • M.H. Haque . Application of energy function to assess the first-swing stability of a power system with an SVC. IEE Proc. Gener. Trans. Distrib. , 6 , 806 - 812
    22. 22)
      • E. Lerch , D. Povh , L. Xu . Advanced SVC control for damping power system oscillations. IEEE Trans. Power Syst. , 2 , 524 - 531
    23. 23)
      • M. Johansson . (2003) Piecewise linear control systems.
    24. 24)
      • K. Zhou , J.C. Doyle . (1997) Essentials of robust control.
    25. 25)
      • A. Isidori . (1999) Nonlinear control systems II.
    26. 26)
      • N.B.O.L. Pettit . (1995) Analysis of piecewise linear dynamical systems.
    27. 27)
      • T.C. Yang . Synchronous generator stabilizer design through incomplete state feedback. Int. J. Electr. Power Energy Syst. , 2 , 91 - 95
    28. 28)
      • M. Pavella , P.G. Murthy . (1994) Transient stability of power systems – theory and practice.
    29. 29)
      • Fan, L.L., Feliachi, A.: `Decentralized stabilization of nonlinear electric power systems using local measurements and feedback linearization', Proc. 43rd IEEE Mideast Symp. on Circuits and Systems, 2000, 2, p. 638–641.
    30. 30)
      • E.W. Kimbark . (1995) Power system stability.
    31. 31)
      • J. Machowski , J.W. Bialek , J.R. Bumby . (1997) Power system dynamics and stability.
    32. 32)
      • P.M. Anderson , A.A. Fouad . (2003) Power system control and stability.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2009.0069
Loading

Related content

content/journals/10.1049/iet-cta.2009.0069
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading