Contraction theory-based recursive design of stabilising controller for a class of non-linear systems

Access Full Text

Contraction theory-based recursive design of stabilising controller for a class of non-linear systems

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The study addresses stabilisation problem of a class of non-linear systems using contraction principle. For this purpose, contraction-based systematic design of control function is presented. Generally, Lyapunov stability-based backstepping technique is widely used to design controllers for strict feedback class of non-linear systems in a recursive manner. However, the present study highlights the usage of contraction-based concepts for stability analysis and presents a systematic procedure to select a single controller for stabilisation of systems having dynamics in strict feedback form. The approach establishes exponential stability of system states. The procedure helps in identifying coordinate transformation to establish contracting nature of the given system. Design of output tracking controller for single-link manipulator system with actuator dynamics is considered to highlight the procedure. The proposed methodology is extended to address synchronisation problem of non-linear systems. As a particular case, synchronisation problem of chaotic systems belonging to the addressed class of systems is explored. Systems to be synchronised are assumed to be connected in a chain through one way coupling. The general scalar coupling function is obtained by utilising the proposed algorithm and stability results are established using partial contraction theory. Numerical simulations are presented at appropriate places to verify the efficacy of the proposed approach.

Inspec keywords: recursive estimation; nonlinear control systems; Lyapunov methods; state feedback; manipulator dynamics; asymptotic stability; control system synthesis

Other keywords: controller stability; contraction based systematic design; stability analysis; contraction theory based recursive design; synchronisation problem; single link manipulator system; nonlinear system; exponential stability; Lyapunov stability based backstepping technique; actuator dynamics; state feedback

Subjects: Other topics in statistics; Manipulators; Stability in control theory; Nonlinear control systems; Control system analysis and synthesis methods; Robot and manipulator mechanics

References

    1. 1)
      • Jouffroy, J., Slotine, J.J.E.: `Methodological remarks on contraction theory', Proc. IEEE Conf. on Decision and Control, 2004, Atlantis, Bahamas, p. 2537–2543.
    2. 2)
      • R. Femat , R. Jauregui-Ortiz , G. Solis-Perales . A chaos based communication scheme via robust asymptotic feedback. IEEE Trans. Circ. Syst. – I , 10 , 1161 - 1169
    3. 3)
      • B. Yao , M. Tomizuka . Adaptive robust control of SISO nonlinear systems in a semi-strict feedback form. Automatica , 5 , 893 - 900
    4. 4)
      • W. Lohmiller , J.J.E. Slotine . Control system design for mechanical systems using contraction theory. IEEE Trans. Autom. Control , 5 , 984 - 989
    5. 5)
      • A. Huang , L. Pivka , C.W. Wu . Chua's equation with cubic nonlinearity. Int. J. Bifurcation Chaos , 2175 - 2222
    6. 6)
      • A. Jayaram , M. Tadi . Synchronization of chaotic systems based on SDRE method. Chaos, Solitons, Fractals , 3 , 707 - 715
    7. 7)
      • W. Lohmiller , J.J.E. Slotine . On contraction analysis for nonlinear systems. Automatica , 6 , 683 - 696
    8. 8)
      • E.A. Jackson , A. Hubler . Periodic entrainment of chaotic logistic map dynamics. Physica D , 3 , 407 - 420
    9. 9)
      • Jouffroy, J.: `Some ancestors of contraction analysis', Proc. IEEE Conf. on Decision and Control, 2005, Seville, Spain, p. 5450–5455.
    10. 10)
      • X. Tan , J. Zhang , Y. Yang . Synchronizing chaotic systems using backstepping design. Chaos, Solitons, Fractals , 1 , 37 - 45
    11. 11)
      • I. Kanellakopoulos , P.V. Kokotovic , A.S. Morse . Systematic design of adaptive controllers for feedback linearizable systems. IEEE Trans. Autom. Control , 11 , 1241 - 1253
    12. 12)
      • Y. Wang , Z.H. Guan , H.O. Wang . Feedback and adaptive control for the synchronization of Chen system via a single variable. Phys. Lett. A , 1 , 34 - 40
    13. 13)
      • G. Grassi , S. Mascolo . A System theory approach for designing cryptosystems based on hyperchaos. IEEE Trans. Circ. Syst. – I , 1135 - 1138
    14. 14)
      • S. Callegari , R. Rovatti , G. Setti . Chaos-based FM signals: application and implementation issues. IEEE Trans. Circ. Syst. – I , 8 , 1141 - 1147
    15. 15)
      • G. Grassi , S. Mascolo . Nonlinear observer design to synchronize hyperchaotic systems via a scalar signal. IEEE Trans. Circ. Syst. – I , 10 , 1011 - 1014
    16. 16)
      • J. Lu , T. Zhou , S. Zhang . Chaos synchronization between linearly coupled chaotic systems. Chaos, Solitons, Fractals , 4 , 529 - 541
    17. 17)
      • A. Pavlov , A. Pogromsky , N. van de Wouw , H. Nijmeijer . Convergent dynamics, a tribute to Boris Pavlovich Demidovich. Syst. Control Lett. , 3 , 257 - 261
    18. 18)
      • J.H. Park . Stability criterion for synchronization of linearly coupled unified chaotic systems. Chaos, Solitons, Fractals , 4 , 1319 - 1325
    19. 19)
      • V. Fromian , G. Scorletti , G. Ferreres . Nonlinear performance of a PI controlled missile: an explanation. Int. J. Robust Nonlinear Control , 8 , 485 - 518
    20. 20)
      • R. Femat , J. Alvarez-Ramirez , B. Castillo-Toledo , J. Gonzalez . On robust chaos suppression in a class of nondriven oscillators: application to the Chua's circuit. IEEE Trans. Circ. Syst. – I , 9 , 1150 - 1152
    21. 21)
      • W. Wang , J.J.E. Slotine . On partial contraction analysis for coupled nonlinear oscillators. Biol. Cybern. , 1 , 38 - 53
    22. 22)
      • Lohmiller, W.: `Contraction analysis of nonlinear systems', 1999, PhD, Department of Mechanical Engineering, MIT.
    23. 23)
      • L. Huang , R. Feng , M. Wang . Synchronization of chaotic systems via nonlinear control. Phys. Lett. A , 4 , 271 - 275
    24. 24)
      • H.N. Agiza , M.T. Yassen . Synchronization of Rossler and Chen chaotic dynamical systems using active control. Phys. Lett. A , 4 , 191 - 197
    25. 25)
      • U. Parlitz , L. Kocarev , T. Stojanovski , H. Preckel . Encoding messages using chaotic synchronization. Phys. Rev. E , 5 , 4351 - 4361
    26. 26)
      • E. Ott , C. Grebogi , J.A. Yorke . Controlling chaos. Phys. Rev. Lett. , 11 , 1196 - 1199
    27. 27)
      • T.L. Liao , N.S. Huang . An observer based approach for chaotic synchronization with application to secure communications. IEEE Trans. Circ. Syst. – I , 9 , 1144 - 1149
    28. 28)
      • E. Cherrier , M. Boutayeb , J. Ragot . Observers-based synchronization and input recovery for a class of nonlinear chaotic models. IEEE Trans. Circ. Syst. – I , 9 , 1977 - 1988
    29. 29)
      • M.T. Yassen . Controlling chaos and synchronization for new chaotic system using linear feedback control. Chaos, Solitons, Fractals , 3 , 913 - 920
    30. 30)
      • J. Hu , S. Chen , L. Chen . Adaptive control for anti-synchronization of Chua's chaotic system. Phys. Lett. A , 6 , 455 - 460
    31. 31)
      • B.B. Sharma , I.N. Kar . Parametric convergence and control of chaotic system using adaptive feedback linearization. Chaos, Solitons, Fractals , 3 , 1475 - 1483
    32. 32)
      • Z. Li , G. Chen , S. Shi , C. Han . Robust adaptive tracking control for a class of uncertain chaotic systems. Phys. Lett. A , 1 , 40 - 43
    33. 33)
      • M. Boutayeb , M. Darouach , H. Rafaralahy . Generalized state-space observers for chaotic synchronization and secure communication. IEEE Trans. Circ. Syst. – I , 3 , 345 - 349
    34. 34)
      • M. Krstic , I. Kanellakopoulos , P.V. Kokotovic . (1995) Nonlinear and adaptive control design.
    35. 35)
      • M.J. Ogorzalek . Taming chaos: Part II – Control. IEEE Trans. Circ. Syst. – I , 10 , 700 - 706
    36. 36)
      • M. Chen . Chaos synchronization in complex networks. IEEE Trans. Circ. Syst. – I , 5 , 1335 - 1346
    37. 37)
      • T. Yang , C.W. Wu , L.O. Chua . Cryptography based on chaotic systems. IEEE Trans. Circ. Syst. – I , 5 , 469 - 472
    38. 38)
      • M. Rios-Bolivar , A.S.I. Zinober . Dynamical adaptive sliding mode output tracking control of a class of nonlinear systems. Int. J. Robust Nonlinear Control , 387 - 405
    39. 39)
      • Y. Liang , H.J. Marquez . Gain scheduling synchronization method for quadratic chaotic systems. IEEE Trans. Circ. Syst. – I , 4 , 1097 - 1107
    40. 40)
      • M. Krstic , I. Kanellakopoulos , P.V. Kokotovic . Adaptive nonlinear control without over-parametrization. Syst. Control Lett. , 3 , 177 - 185
    41. 41)
      • G. Cimatti , R. Rovatti , G. Setti . Chaos-based spreading in DS-UWB sensor networks increases available bit rate. IEEE Trans. Circ. Syst. – I , 6 , 1327 - 1339
    42. 42)
      • J. Lu , X. Wu , X. Han , J. Lu . Adaptive feedback synchronization of a unified chaotic system. Phys. Lett. A , 4 , 327 - 333
    43. 43)
      • T.L. Carroll , L.M. Pecora . Synchronizing chaotic circuits. IEEE Trans. Circ. Syst – I , 4 , 453 - 456
    44. 44)
      • M. Chen , Z. Han . Controlling and synchronizing chaotic Genesio system via nonlinear feedback control. Chaos, Solitons, Fractals , 3 , 709 - 716
    45. 45)
      • G.P. Jiang , W.K.S. Tang , G. Chen . A state-observer-based approach for synchronization in complex dynamical networks. IEEE Trans. Circ. Syst. – I , 12 , 2739 - 2745
    46. 46)
      • D. Angeli . A Lyapunov approach to incremental stability properties. IEEE Trans. Autom. Control , 3 , 410 - 421
    47. 47)
      • S. Mascolo , G. Grassi . Controlling chaotic dynamics using backstepping design with application to the Lorenz system and Chua's circuit. Int. J. Bifurcation Chaos , 7 , 1425 - 1434
    48. 48)
      • Jouffroy, J., Lottin, J.: `Integrator backstepping using contraction theory: a brief technological note', Proc. IFAC World Congress, 2002, Barcelona, Spain.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2009.0060
Loading

Related content

content/journals/10.1049/iet-cta.2009.0060
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading