String formations of multiple vehicles via pursuit strategy

Access Full Text

String formations of multiple vehicles via pursuit strategy

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

String formations of multiple vehicles where all vehicles involved are linked by a virtual thread are studied. Such a formation is useful for a fleet of vehicles driving in a platoon sequence on a road. Our approach differs from most other formation algorithms by separating distance and bearing between neighbouring vehicles. We treat the string formation as a natural consequence of a pursuit game. The proposed pursuit strategy is a distributed algorithm and uses only the relative distance error of the vehicle in front. Stable states are presented and the stability of the algorithm is proven. Finally, some simulation examples are given to demonstrate the practical application of the theoretical results.

Inspec keywords: collision avoidance; position control; road vehicles; feedback; stability

Other keywords: platoon sequence; multiple vehicles via pursuit strategy; virtual thread; formation algorithms; string formations; neighbouring vehicles

Subjects: Road-traffic system control; Spatial variables control; Stability in control theory

References

    1. 1)
      • Khatir, M.E., Davison, E.J.: `A decentralized lateral-longitudinal controller for a platoon of vehicles operating on a plane', Proc. American Control Conf., 2006, Minneapolis, MN, USA, p. 5891–5896.
    2. 2)
      • Leonard, N.E., Fiorelli, E.: `Virtual leaders, artificial potentials and coordinated control of groups', Proc. IEEE Conf. on Decision and Control, December 2001, Orlando, FL, USA, p. 2968–2973.
    3. 3)
      • I.A.F. Ihle , J. Jouffroy , T.I. Fossen . Formation control of marine surface craft: a lagrangian approach. IEEE J. Oceantic Eng. , 922 - 934
    4. 4)
      • J.R.T. Lawton , R.W. Beard , B.J. Young . A decentralized approach to formation maneuver. IEEE Trans. Robot. Autom. , 6 , 933 - 941
    5. 5)
      • W.S. Levine , M. Athans . On the optimal error regulation of a string of moving vehicles. IEEE Trans. Autom. Control , 3 , 355 - 361
    6. 6)
      • Ren, W., Beard, R.W.: `A decentralized scheme for spacecraft formation flying via the virtual structure approach', Proc. American Control Conf., June 2003, Denver, CO, p. 1746–1751.
    7. 7)
      • J.A. Marshall , M.E. Broucke , B.A. Francis . Formations of vehicles in cyclic pursuit. IEEE Trans. Autom. Control , 11 , 1963 - 1974
    8. 8)
      • M.R. Jovanović , B. Bamieh . On the ill-posedness of certain vehicular platoon control problems. IEEE Trans. Autom. Control , 9 , 1307 - 1321
    9. 9)
      • M.A. Lewis , K.-H. Tan . High precision formation control of mobile robots using virtual structures. Auton. Robots , 387 - 403
    10. 10)
      • T. Balch , R.C. Arkin . Behavior-based formation control for multirobot teams. IEEE Trans. Robot. Autom. , 6 , 926 - 939
    11. 11)
      • Wang, P.K.C.: `Navigation strategies for multiple autonomous robots moving in formation', IEEE/RSJ Int. Workshop on Intelligent Robots and Systems, September 1989, Tsukuba, Japan, p. 486–493.
    12. 12)
      • J.A. Marshall , T. Fung , M.E. Broucke , G.M. Deleuterio , B.A. Francis . Experiments in multirobot coordination. Robot. Auton. Syst. , 265 - 275
    13. 13)
      • Z. Lin , M. Broucke , B. Francis . Local control strategies for groups of mobile autonomous agents. IEEE Trans. Autom. Control , 4 , 622 - 629
    14. 14)
      • N. Lechevin , C.A. Rabbath , P. Sicard . Trajectory tracking of leader–follower formations characterized by constant line-of-sight angles. Automatica , 2131 - 2141
    15. 15)
      • Desai, J.P., Ostrowski, J., Kumar, V.: `Controlling formation of multiple mobile robots', Proc. IEEE Int. Conf. on Robotics and Automation, 1998, Leuven, Belgium, p. 2864–2869.
    16. 16)
      • Reynolds, C.W.: `Flocks, herds, and schools: a distributed behavioral model', Proc. ACM Conf. on Computer Graphics, SIGGRAPH'87, 1987, 21, p. 25–34.
    17. 17)
      • J. Shao , G. Xie , L. Wang . Leader-following formation control of multiple mobile vehicles. IET Control Theory Appl. , 2 , 545 - 552
    18. 18)
      • H.K. Khalil . (1988) Nonlinear systems.
    19. 19)
      • D. Swaroop , J.K. Hedrick . Sting stability of interconnected systems. IEEE Trans. Autom. Control , 349 - 357
    20. 20)
      • A. Pant , P. Seiler , K. Hedrick . Mesh stability of look-ahead interconnected systems. IEEE Trans. Autom. Control , 403 - 407
    21. 21)
      • Consolini, L., Morbidi, F., Prattichizzo, D., Tosques, M.: `Steering hierarchical formations of unicycle robots', Proc. 46th IEEE Conf. on Decision and Control, 2007, New Orleans, LA, USA, p. 1410–1415.
    22. 22)
      • A.K. De , R. Fierro , R.V. Kumar , J.P. Ostrowski , J. Spletzer , C.J. Taylor . A vision-based formation control framework. IEEE Trans. Robot. Autom. , 5 , 813 - 825
    23. 23)
      • G. Antonelli , F. Arrichiello , S. Chiaverini . The entrapment/escorting mission. IEEE Robot. Autom. Mag. , 1 , 22 - 29
    24. 24)
      • H.G. Tanner , G.J. Pappas , V. Kumar . Leader-to-formation stability. IEEE Trans. Robot. Autom. , 3 , 443 - 455
    25. 25)
      • M. Aicardi , G. Casalino , A. Bicchi , A. Balestrino . Closed loop steering of unicycle-like vehicles via Lyapunov techniques. IEEE Robot. Autom. Mag. , 1 , 27 - 35
    26. 26)
      • H. Lee , M. Tomizuka . Coordinated longitudinal and lateral motion control of vehicles for ivhs. J. Dyn. Syst. Meas. and Control , 535 - 543
    27. 27)
      • Hara, S., Hayakawa, T., Sugata, H.: `Stability analysis of linear systems with generalized frequency variables and its applications to formation control', Proc. 46th IEEE Conf. on Decision and Control, no. 1459-1466, 2007, New Orleans, LA, USA.
    28. 28)
      • A. Howard , L.E. Parker , G.S. Sukhatme . The SDR experience: experiments with a large-scale heterogeneous mobile robot team.
    29. 29)
      • J.P. Desai , J.P. Ostrowski , V. Kumar . Modeling and control of formations of nonholonomic mobile robots. IEEE Trans. Robot. Autom. , 6 , 905 - 908
    30. 30)
      • N. Michael , J. Fink , V. Kumar . Experimental testbed for large multirobot teams. IEEE Robot. Automat. Mag. , 1 , 53 - 61
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2009.0047
Loading

Related content

content/journals/10.1049/iet-cta.2009.0047
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading