http://iet.metastore.ingenta.com
1887

Polynomial approach to non-linear predictive generalised minimum variance control

Polynomial approach to non-linear predictive generalised minimum variance control

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A relatively simple approach to non-linear predictive generalised minimum variance (NPGMV) control is introduced for non-linear discrete-time multivariable systems. The system is represented by a combination of a stable non-linear subsystem where no structure is assumed and a linear subsystem that may be unstable and modelled in polynomial matrix form. The multi-step predictive control cost index to be minimised involves both weighted error and control signal costing terms. The NPGMV control law involves an assumption on the choice of cost-function weights to ensure the existence of a stable non-linear closed-loop operator. A valuable feature of the control law is that in the asymptotic case, where the plant is linear, the controller reduces to a polynomial matrix version of the well known generalised predictive control (GPC) controller. In the limiting case when the plant is non-linear and the cost-function is single step the controller becomes equal to the polynomial matrix version of the so-called non-linear generalised minimum variance controller. The controller can be implemented in a form related to a non-linear version of the Smith predictor but unlike this compensator a stabilising control law can be obtained for open-loop unstable processes.

References

    1. 1)
      • Cutler, C.R., Ramaker, B.L.: `Dynamic matrix control – a computer control algorithm', A.I.C.H.E, 86th National Meeting, April 1979.
    2. 2)
      • D.W. Clarke , C. Mohtadi , P.S. Tuffs . Generalized predictive control – Part 1, The basic algorithm, Part 2, Extensions and interpretations. Automatica , 2 , 137 - 148
    3. 3)
      • D.W. Clarke , C. Montadi . Properties of generalised predictive control. Automatica , 6 , 859 - 875
    4. 4)
      • J. Richalet , A. Rault , J.L. Testud , J. Papon . Model predictive heuristic control applications to industrial processes. Automatica , 413 - 428
    5. 5)
      • J. Richalet . Industrial applications of model based predictive control. Automatica , 8 , 1251 - 1274
    6. 6)
      • R. Bitmead , M. Gevers , V. Wertz . (1990) Adaptive optimal control: the thinking man's GPC.
    7. 7)
      • Grimble, M.J.: `GMV control of nonlinear multivariable systems', UKACC Conf. Control 2004, University of Bath, 6–9 September 2004.
    8. 8)
      • M.J. Grimble . Non-linear generalised minimum variance feedback, feedforward and tracking control. Automatica , 957 - 969
    9. 9)
      • Grimble, M.J., Majecki, P.: `Nonlinear generalised minimum variance control under actuator saturation', IFAC World Congress, 8 July 2005, Prague.
    10. 10)
      • M. Cannon , B. Kouvaritakis . (2001) Open-loop and closed-loop optimality in interpolation MPC, Nonlinear predictive control: theory and practice.
    11. 11)
      • M. Cannon , B. Kouvaritakis . Efficient constrained model predictive control with asymptotic optimality. Siam J. Control Optim. , 1 , 60 - 82
    12. 12)
      • M. Cannon , B. Kouvaritakis , Y.I. Lee , A.C. Brooms . Efficient nonlinear predictive control. Int. J. Control , 4 , 361 - 372
    13. 13)
      • M. Cannon , V. Deshmukh , B. Kouvaritakis . Nonlinear model predictive control with polytopic invariant sets. Automatica , 8 , 1487 - 1494
    14. 14)
      • M.V. Kothare , V. Balakrishnan , M. Morari . Robust constrained model predictive control using linear matrix inequalities. Automatica , 10 , 1361 - 1379
    15. 15)
      • H. Michalska , D.Q. Mayne . Robust receding horizon control of constrained non-linear systems. IEEE Trans. Autom. Control , 1623 - 1633
    16. 16)
      • J.S. Shamma , M. Athans . Analysis of gain scheduled control for non-linear plants. IEEE Trans. Autom. Control , 898 - 907
    17. 17)
      • B. Kouvaritakis , M. Cannon , J.A. Rossiter . Nonlinear model based predictive control. Int. J. Control , 10 , 919 - 928
    18. 18)
      • Y.I. Lee , B. Kouvaritakis , M. Cannon . Constrained receding horizon predictive control for nonlinear systems. Automatica , 12 , 2093 - 2102
    19. 19)
      • D.Q. Mayne , J.B. Rawlings , C.V. Rao , P.O.M. Scokaert . Constrained model predictive control: stability and optimality. Automatica , 6 , 789 - 814
    20. 20)
      • P.O.M. Scokaert , D.Q. Mayne , J.B. Rawlings . Suboptimal model predictive control (feasibility implies stability). IEEE Trans. Autom. Control , 3 , 648 - 654
    21. 21)
      • A.C. Brooms , B. Kouvaritakis . Successive constrained optimisation and interpolation in non-linear model based predictive control. Int. J. Control , 4 , 312 - 316
    22. 22)
      • Allgower, F., Findeisen, R.: `Non-linear predictive control of a distillation column', Int. Symp. Non-linear Model Predictive Control, 1998, Ascona, Switzerland.
    23. 23)
      • E.F. Camacho . Constrained generalized predictive control. IEEE Trans. Autom. Control , 327 - 332
    24. 24)
      • M.J. Grimble . (2006) Robust industrial control.
    25. 25)
      • M.J. Grimble . (2001) Industrial control systems design.
    26. 26)
      • M.J. Grimble , M.A. Johnson . (1988) Optimal control and stochastic estimation.
    27. 27)
      • W.H. Kwon , A.E. Pearson . A modified quadratic cost problem and feedback stabilization of a linear system. IEEE Trans. Autom. Control , 5 , 838 - 842
    28. 28)
      • T. Perez . (2005) Ship motion control.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2009.0043
Loading

Related content

content/journals/10.1049/iet-cta.2009.0043
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address