http://iet.metastore.ingenta.com
1887

Kalman filtering with state constraints: a survey of linear and nonlinear algorithms

Kalman filtering with state constraints: a survey of linear and nonlinear algorithms

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The Kalman filter is the minimum-variance state estimator for linear dynamic systems with Gaussian noise. Even if the noise is non-Gaussian, the Kalman filter is the best linear estimator. For nonlinear systems it is not possible, in general, to derive the optimal state estimator in closed form, but various modifications of the Kalman filter can be used to estimate the state. These modifications include the extended Kalman filter, the unscented Kalman filter, and the particle filter. Although the Kalman filter and its modifications are powerful tools for state estimation, we might have information about a system that the Kalman filter does not incorporate. For example, we may know that the states satisfy equality or inequality constraints. In this case we can modify the Kalman filter to exploit this additional information and get better filtering performance than the Kalman filter provides. This paper provides an overview of various ways to incorporate state constraints in the Kalman filter and its nonlinear modifications. If both the system and state constraints are linear, then all of these different approaches result in the same state estimate, which is the optimal constrained linear state estimate. If either the system or constraints are nonlinear, then constrained filtering is, in general, not optimal, and different approaches give different results.

References

    1. 1)
      • I. Rhodes . A tutorial introduction to estimation and filtering. IEEE Trans. Autom. Control , 6 , 688 - 706
    2. 2)
      • D. Simon . (2006) Optimal state estimation.
    3. 3)
      • S. Julier , J. Uhlmann . Unscented filtering and nonlinear estimation. Proc. IEEE , 3 , 401 - 422
    4. 4)
      • A. Doucet , N. de Freitas , N. Gordon . (2001) Sequential Monte Carlo methods in practice.
    5. 5)
      • S. Julier , J. LaViola . On Kalman filtering with nonlinear equality constraints. IEEE Trans. Signal Process. , 6 , 2774 - 2784
    6. 6)
    7. 7)
      • P. Vachhani , R. Rengaswamy , V. Gangwal , S. Narasimhan . Recursive estimation in constrained nonlinear dynamical systems. AIChE J. , 3 , 946 - 959
    8. 8)
      • J. Porrill . Optimal combination and constraints for geometrical sensor data. Int. J. Robot. Res. , 6 , 66 - 77
    9. 9)
      • A. Alouani , W. Blair . Use of a kinematic constraint in tracking constant speed, maneuvering targets. IEEE Trans. Autom. Control , 7 , 1107 - 1111
    10. 10)
    11. 11)
      • T. Chia , P. Chow , H. Chizek . Recursive parameter identification of constrained systems: an application to electrically stimulated muscle. IEEE Trans. Biomed. Eng. , 5 , 429 - 441
    12. 12)
      • M.W. Spong , S. Hutchinson , M. Vidyasagar . (2006) Robot modeling and control.
    13. 13)
      • D. Simon , T. Chia . Kalman filtering with state equality constraints. IEEE Trans. Aerospace Electron. Syst. , 1 , 128 - 136
    14. 14)
      • B. Teixeira , J. Chandrasekar , L. Torres , L. Aguirre , D. Bernstein . State estimation for linear and non-linear equality-constrained systems. Int. J. Control , 5 , 918 - 936
    15. 15)
      • Wen, W., Durrant-Whyte, H.: `Model-based multi-sensor data fusion', IEEE Int. Conf. on Robotics Automation, 1992, Nice, France, p. 1720–1726.
    16. 16)
      • Chia, T.: `Parameter identification and state estimation of constrained systems', 1985, PhD, Case Western Reserve University.
    17. 17)
      • N. Gupta , R. Hauser . Kalman filtering with equality and inequality state constraints.
    18. 18)
      • Sircoulomb, V., Israel, J., Hoblos, G., Chafouk, H., Ragot, J.: `State estimation under nonlinear state inequality constraints. A tracking application', 16thMediterranean Conf. on Control Automation, 2008, Ajaccio, France, p. 1669–1674.
    19. 19)
      • Shimada, N., Shirai, Y., Kuno, Y., Miura, J.: `Hand gesture estimation and model refinement using monocular camera – ambiguity limitation by inequality constraints', IEEE Int. Conf. on Automatic Face Gesture Recognition, 1998, Nara, Japan, p. 268–273.
    20. 20)
      • D. Simon , D.L. Simon . Constrained Kalman filtering via density function truncation for turbofan engine health estimation. Int. J. Syst. Sci. , 2 , 159 - 171
    21. 21)
      • S. Ko , R. Bitmead . State estimation for linear systems with state equality constraints. Automatica , 8 , 1363 - 1368
    22. 22)
      • C. Yang , E. Blasch . Kalman filtering with nonlinear state constraints. IEEE Trans. Aeros. Electron. Syst. , 1 , 70 - 84
    23. 23)
      • J. De Geeter , H. Van Brussel , J. De Schutter . A smoothly constrained Kalman filter. IEEE Trans. Pattern Anal. Machine Intell. , 10 , 1171 - 1177
    24. 24)
      • G. Goodwin , M. Seron , J. De Dona . (2005) Constrained control and estimation.
    25. 25)
      • C. Rao , J. Rawlings , J. Lee . Constrained linear state estimation – a moving horizon approach. Automatica , 10 , 1619 - 1628
    26. 26)
      • C. Rao , J. Rawlings . Constrained process monitoring: moving-horizon approach. AIChE J. , 1 , 97 - 109
    27. 27)
      • B. Bell , J. Burke , G. Pillonetto . An inequality constrained nonlinear Kalman–Bucy smoother by interior point likelihood maximization. Automatica , 1 , 25 - 33
    28. 28)
    29. 29)
      • R. Kalman . A new approach to linear filtering and prediction problems. ASME J. Basic Eng. , 35 - 45
    30. 30)
      • L. Servi , Y. Ho . Recursive estimation in the presence of uniformly distributed measurement noise. IEEE Trans. Autom. Control , 2 , 563 - 564
    31. 31)
      • H. Doran . Constraining Kalman filter and smoothing estimates to satisfy time-varying restrictions. Rev. Econ. Stat. , 3 , 568 - 572
    32. 32)
      • P. Maybeck . (1979) Stochastic models, estimation, and control – volume 1.
    33. 33)
      • R.F. Stengel . (1994) Optimal control and estimation.
    34. 34)
      • J. Tugnait . Constrained signal restoration via iterated extended Kalman filtering. IEEE Trans. Acoust., Speech Signal Process. , 2 , 472 - 475
    35. 35)
      • Gupta, N.: `Kalman filtering in the presence of state space equality constraints', Chinese Control Conf., 2007, Harbin, China, p. 107–113, http://arxiv.org/abs/0705.4563v1, accessed May 2009.
    36. 36)
      • R. Fletcher . (1987) Practical methods of optimization.
    37. 37)
      • P.E. Gill . (1981) Practical optimization.
    38. 38)
      • S. Boyd , L. Vandenberghe . (2004) Convex optimization.
    39. 39)
    40. 40)
      • M. Tahk , J. Speyer . Target tracking problems subject to kinematic constraints. IEEE Trans. Autom. Control , 3 , 324 - 326
    41. 41)
      • D. Massicotte , R. Morawski , A. Barwicz . Incorporation of positivity constraint into a Kalman-filter-based algorithm for correction of spectrometric data. IEEE Trans. Instrum. Measure. , 1 , 2 - 7
    42. 42)
      • Simon, D.: ‘Kalman filtering with state constraints: a survey of linear and nonlinear algorithms’. http://academic.csuohio.edu/simond/ConstrKF, accessed May 2010.
    43. 43)
      • H. Michalska , D. Mayne . Moving horizon observers and observer-based control. IEEE Trans. Autom. Control , 6 , 995 - 1006
    44. 44)
      • D. Robertson , J. Lee , J. Rawlings . A moving horizon-based approach for least-squares estimation. AIChE J. , 8 , 2209 - 2224
    45. 45)
      • A. Ruszczynski . (2006) Nonlinear optimization.
    46. 46)
      • W. Sun , Y. Yuan . (2006) Optimization theory and methods: nonlinear programming.
    47. 47)
    48. 48)
      • T. Anderson . (2003) An introduction to multivariate statistical analysis.
    49. 49)
      • Teixeira, B., Torres, L., Aguirre, L., Bernstein, D.: `Unscented filtering for interval-constrained nonlinear systems', IEEE Conf. on Decision Control, 2008, Cancun, Mexico, p. 5116–5121.
    50. 50)
      • P. Vachhani , S. Narasimhan , R. Rengaswamy . Robust and reliable estimation via unscented recursive nonlinear dynamic data reconciliation. J. Process Control , 10 , 1075 - 1086
    51. 51)
      • Kandepu, R., Imsland, L., Foss, B.: `Constrained state estimation using the unscented Kalman filter', 16thMediterranean Conf. on Control Automation, 2008, Ajaccio, France, p. 1453–1458.
    52. 52)
      • C. Qu , J. Hahn . Computation of arrival cost for moving horizon estimation via unscented Kalman filtering. J. Process Control , 2 , 358 - 363
    53. 53)
    54. 54)
      • Agate, C., Sullivan, K.: `Road-constrained target tracking and identification using a particle filter', Signal and Data Processing of Small Targets, 2003, San Diego, CA, p. 532–543.
    55. 55)
      • Kyriakides, I., Morrell, D., Papandreou-Suppappola, A.: `A particle filtering approach to constrained motion estimation in tracking multiple targets', Asilomar Conf. on Signals, Systems and Computers, 2005, Monterey, CA, p. 94–98.
    56. 56)
      • Kyriakides, I., Morrell, D., Papandreou-Suppappola, A.: `Multiple target tracking with constrained motion using particle filtering methods', IEEE Int. Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005, Puerto Vallarta, Mexico, p. 85–88.
    57. 57)
      • Y. Boers , H. Driessenm . Particle filter track-before-detect application using inequality constraints. IEEE Trans. Aerosp. Electron. Syst. , 4 , 1481 - 1487
    58. 58)
      • N. Shor . (1985) Minimization methods for non-differentiable functions and applications.
    59. 59)
      • Kuntsevich, A., Kappel, F.: ‘SolvOpt’, August 1997, www.unigraz.at/imawww/kuntsevich/solvopt/, accessed May 2010.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2009.0032
Loading

Related content

content/journals/10.1049/iet-cta.2009.0032
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address