Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Decentralised fault detection of large-scale systems with limited network communications

Decentralised fault detection of large-scale systems with limited network communications

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

An optimal decentralised fault detection (FD) system is proposed for a class of discrete-time large-scale systems, where limited information exchange among subsystems is enabled with communication networks. Such an FD system consists of two parts in each subsystem: a residual generator (RG) and a residual evaluator. By taking the advantages of network communications, the RGs are designed to match a proper reference model in a stochastic sense such that a best trade-off between the robustness against disturbances and the sensitivity to faults can be achieved. In each residual evaluator, a norm-based evaluation function is selected for evaluating residual signals and a corresponding threshold is calculated for detecting the occurrences of faults. All the solutions are presented in the form of linear matrix inequalities. Finally, a numerical example is given to illustrate the results and the improvement achieved by applying network communications.

References

    1. 1)
      • M. Zhong , H. Ye , P. Shi , G. Wang . Fault detection for Markovian jump systems. IEE Proc. Control Theory Appl. , 397 - 402
    2. 2)
      • S.X. Ding , T. Jeinsch , P.M. Frank , E.L. Ding . A unified approach to the optimization of fault detection systems. Int. J. Adapt. Control Signal Process. , 725 - 745
    3. 3)
      • J. Stoustrup , H.H. Niemann . Fault estimation – a standard problem approach. Int. J. Robust Nonlinear Control , 649 - 673
    4. 4)
      • Gui, W.H., Xie, Y.F., Yang, C.H., Huang, C.: `Decentralized robust ', Proc. 46th IEEE CDC, 2007, New Orleans, USA.
    5. 5)
      • Sauter, D., Boukhobza, T., Hamelin, F.: `Decentralized and autonomous design for FDI/FTC of networked control systems', Proc. IFAC Symp. SAFEPROCESS, 2007, Beijing, China.
    6. 6)
      • L. Lian , J.R. Moyne , D.M. Tilbury . Performance evaluation of control networks: Ethernet, ControlNet, and DeviceNet. IEEE Control Syst. Mag. , 66 - 83
    7. 7)
      • P.M. Frank , S.X. Ding . Survey of robust residual generation and evaluation methods in observer-based fault detection systems. J. Process Control , 403 - 424
    8. 8)
      • P. Tipsuwan , M. Chow . Control methodologies in networked control systems. Control Eng. Pract. , 1099 - 1111
    9. 9)
      • R.J. Patton , P.M. Frank , R.C. Clark . (2000) Issues of fault diagnosis for dynamics systems.
    10. 10)
      • H. Wang , G.H. Yang . A finite frequency domain approach to fault detection for linear discrete-time systems. Int. J. Control , 1162 - 1171
    11. 11)
      • P. Seiler , R. Sengupta . A bounded real lemma for jump systems. IEEE Trans. Autom. Control , 1651 - 1654
    12. 12)
      • H. Gao , T. Chen , L. Wang . Robust fault detection with missing measurements. Int. J. Control , 804 - 819
    13. 13)
      • W.H. Chung , J.L. Speyer , R.H. Chen . A decentralised fault detection filter. Trans. ASME J. Dyn. Syst. Meas. Control , 237 - 247
    14. 14)
      • S.X. Ding . (2008) Model-based fault diagnosis techniques: design schemes, algorithms, and tools.
    15. 15)
      • P. Zhang , S.X. Ding , G.Z. Wang , D.H. Zhou . Fault detection of linear discrete time periodic systems. IEEE Trans. Autom. Control , 239 - 244
    16. 16)
      • M.F. Hassan , M.A. Sultan , M.S. Attia . Fault detection in large-scale stochastic dynamic systems. IEE Proc. D, Control Theory Appl. , 119 - 124
    17. 17)
      • J. Lavaei , A.G. Aghdam . Stabilization of decentralised control systems by means of periodic feedback. Automatica , 1120 - 1126
    18. 18)
      • C. Scorletti , G. Duc . An LMI approach to decentralised H∞ control. Int. J. Control , 211 - 224
    19. 19)
      • X.G. Yan , C. Edwards . Robust decentralised actuator fault detection and estimation for large-scale systems using sliding mode observer. Int. J. Control , 591 - 606
    20. 20)
      • A.I. Zecevic , D.D. Siljak . Design of robust static output feedback for large-scale systems. IEEE Trans. Autom. Control , 2040 - 2044
    21. 21)
      • M.F. Hassan , R.I. Badr , M.M. Elewa , H.A. Elnemr . Expert robust decentralised controller for uncertain large-scale systems. IEE Proc. D, Control Theory Appl. , 519 - 529
    22. 22)
      • M. Ikeda , G.S. Zhai , Y. Fujisaki . Decentralized H∞ controller design: a matrix inequality appraoch using a homotopy method. Automatica , 565 - 572
    23. 23)
      • M. Blanke , M. Kinnaert , J. Lunze , M. Staroswiecki . (2003) Diagnosis and fault-tolerant control.
    24. 24)
      • J. Stoustrup , K. Zhou . (2007) Robustness issues in fault diagnosis and fault tolerant control.
    25. 25)
      • L. Zhang , D. Hristu-Varsakelis . Communication and control co-design for networked control systems. Automatica , 953 - 958
    26. 26)
      • N. Liu , K. Zhou . Optimal robust fault detection for linear discrete time systems. J. Control Sci. Eng.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2008.0604
Loading

Related content

content/journals/10.1049/iet-cta.2008.0604
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address